
Extracted from:

Modern C++ Programming with
Test-Driven Development

Code Better, Sleep Better

This PDF file contains pages extracted from Modern C++ Programming with Test-
Driven Development, published by the Pragmatic Bookshelf. For more information
or to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Modern C++ Programming with
Test-Driven Development

Code Better, Sleep Better

Jeff Langr

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-48-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2013

http://pragprog.com

Introduction
Despite the current explosion in programming languages, C++ soldiers on. It
is the fourth-most popular programming language, per the July 2013 Tiobe
index. (You can find the latest index at http://www.tiobe.com/index.php/content/paper-
info/tpci/index.html.) The 2011 ISO standard (ISO/IEC 14822:2011, aka C++11)
brings features to C++ that may increase its acceptance...or at least soften
objections against its use.

C++ remains one of your best choices for building high-performance solutions.
If your company’s products integrate with hardware, chances are you have
a sizeable existing system built in C++. If your company has been around
since the 1990s or earlier, chances are you have a long-lived C++ system,
and chances are also good that it’s not disappearing anytime in the next
several years.

Given that you’re now working in C++, you might be thinking one of the fol-
lowing things:

• It’s 2013. Why am I back in this difficult (but entertaining) language that
I thought I’d abandoned years ago? How am I going to survive without
shooting myself in the foot?

• I’m a seasoned C++ pro, I know this powerful language like the back of
my hand, and I’ve been developing successfully for years. Why would I
need to change how I work?

• Where’s my paycheck?

My personal sentiment is that I first worked with C++ around the early 1990s,
before the rise of things like templates (and template metaprogramming!),
RTTI, STL, and Boost. Since then, I’ve had a few occasions where I’ve had to
return to the powerful language and have done so with some dismay. Like
any language, C++ allows you to shoot yourself in the foot—but with C++,
you sometimes don’t realize you shot yourself until it’s too late. And you’re
probably missing more toes than folks working with other languages.

• Click HERE to purchase this book now. discuss

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

If you’ve been working with C++ for years, you likely have adopted many
idioms and practices to help ensure your code remains of high quality.
Die-hard C++ veterans are some of the more careful programmers across all
languages because surviving in C++ for so long requires meticulous care and
attention to the code you craft.

With all this care taken, one might think that the code quality on C++ systems
should be high. Yet most C++ systems exhibit the same problems we all see
time and time again, usually regardless of language.

• Monstrous source files with thousands of lines
• Member functions with hundreds or thousands of lines of inscrutable

code
• Volumes of dead code
• Build times extending into several hours
• High numbers of defects
• Logic too convoluted by quick fixes to be safely managed
• Code duplicated across files, classes, and modules
• Code riddled with long-obsolete coding practices

Is this decay inevitable? No! Test-Driven Development is a tool you can master
and wield in order to help stave off system entropy. It may even reinvigorate
your passion for programming.

If you’re simply seeking a paycheck, there are plenty of C++ jobs out there
that will keep you employed. However, C++ is a highly technical and nuanced
language. Wielding it carelessly will lead to defects, intermittent failures, and
possibly multiday debugging sessions—factors that can put your paycheck
at risk. TDD can help.

The effort required to add new functionality on such large, long-lived C++
systems usually disappoints and often is inestimable. Simply understanding
a passage of code in order to change a few lines of code can take hours, even
days. Productivity is further drained as developers wait hours to determine
whether their changes compiled and wait even longer to see whether they
integrated well with the remainder of the system.

It doesn’t have to be this way. Test-Driven Development (TDD), a software
design technique devised in the late 1990s, can help you wrestle your C++
system to the ground and keep it under control as you continue adding new
features. (Notions of writing tests before code have been around for consider-
ably longer. However, the TDD cycle in its formal, disciplined form was devised
by Ward Cunningham and Kent Beck [Test Driven Development: By Example
[Bec02]].)

• vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

The primary intent for this book is to teach you a disciplined approach for
the practical application of TDD. You’ll learn the following:

• The fundamental mechanics of TDD
• The potential benefits of TDD
• How TDD helps you address design deficiencies as they arise
• The challenges and costs of doing TDD
• How TDD can reduce or even eliminate debugging sessions
• How to sustain TDD over time

But Can It Work for Me on My System?

“What’s all this fuss about unit testing? It doesn’t seem to be helping me
much.”

You might have already tried unit testing. Perhaps you are currently struggling
with writing unit tests against your legacy system. Maybe it seems like TDD
is OK for those rare other souls fortunate enough to be working on a new
system. But does it solve your day-to-day problems of working on a long-
entrenched, challenging C++ system?

Indeed, TDD is a useful tool but is no silver bullet for dealing with legacy
systems. While you can test-drive many of the new features you add to your
system, you’ll also need to begin chipping away at the years of accumulated
cruft. You’ll need additional strategies and tactics for a sustained cleanup
approach. You’ll need to learn about tactical dependency-breaking techniques
and safe code change approaches that Michael Feathers presents in the
essential book Working Effectively with Legacy Code [Fea04]. You’ll need to
understand how to approach large-scale refactorings without creating large-
scale issues. For that, you’ll learn about the Mikado Method [BE12]. This book
will teach such supportive practices and more.

Simply adding unit tests for code you’ve already written (something I call Test-
After Development [TAD]) usually has little impact as you struggle with “this
is just how the system is.“ You might invest thousands of person-hours in
writing tests with little measurable impact to system quality.

If you allow TDD to help you shape your systems, your designs will by defini-
tion be testable. They will also be different—in many ways, better—than if
you did not use TDD. The more you understand what a good design should
look like, the more TDD will help guide you there.

To aid you in shifting how you think about design, this book emphasizes
principles that underlie good code management, such as the SOLID principles

• Click HERE to purchase this book now. discuss

But Can It Work for Me on My System? • vii

http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

of object-oriented design described in Agile Software Development, Principles,
Patterns, and Practices [Mar02]. I discuss how this sense of good design sup-
ports ongoing development and productivity and how TDD can help a mindful
developer achieve more consistent and reliable results.

Who This Book Is For

This book is written to help C++ programmers of all skill levels, from novices
with a fundamental understanding of the language to old salts steeped in
language esoterica. If you’ve been away from C++ for some time, you’ll find
that the rapid feedback cycles of TDD will help you rapidly reramp up on the
language.

While the goal of this book is to teach TDD, you will find value in this book
regardless of your TDD experience. If you are a complete novice to the concept
of writing unit tests for your code, I’ll take you small step by small step
through the basics of TDD. If you are fairly new to TDD, you’ll discover a
wealth of expert advice throughout the book, all presented in simple fashion
with straightforward examples. Even seasoned test-drivers should find some
useful nuggets of wisdom, a stronger theoretical basis for the practice, and
some new topics for exploration.

If you are a skeptic, you’ll explore TDD from several angles. I’ll inject my
thoughts throughout about why I think TDD works well, and I’ll also share
experiences about when it didn’t work so well and why. The book is not a
sales brochure but an eyes-open exploration of a transformative technique.

Readers of all stripes will also find ideas for growing and sustaining TDD on
their team. It’s easy to get started with TDD, but your team will encounter
many challenges along the way. How can you prevent these challenges from
derailing your transition effort? How do you prevent such disasters? I present
some ideas that I’ve seen work well in Growing and Sustaining TDD.

What You’ll Need

To code any of the examples in this book, you’ll need a compiler, of course,
and a unit testing tool. Some of the examples also require third-party libraries.
This section overviews these three elements. You’ll want to refer to Global
Setup for further details around what you’ll need.

A Unit Testing Tool

Out of the dozens of available C++ unit testing tools, I chose Google Mock
(which sits atop Google Test) for most of the examples in this book. It currently
returns the most hits on a web search, but I primarily chose it because it

• viii

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

supports Hamcrest notation (a matcher-based assertion form designed to
provide highly expressive tests). The information in Global Setup will help you
come up to speed on Google Mock.

However, this book is neither a comprehensive treatise nor a sales brochure
for Google Mock. It is instead a book that teaches the discipline of TDD. You’ll
learn enough Google Mock to practice TDD effectively.

You’ll also use another unit testing tool named CppUTest for some of the
examples. You’ll find that it’s fairly easy to learn another unit testing tool,
which should help ease any concerns you might have if you’re not using
Google Mock or CppUTest.

If you are using a different unit testing tool such as CppUnit or Boost.Test,
no worries! These other tools work much like Google Mock in concept and
are often similar in implementation. You can easily follow along and do the
TDD examples using virtually any of the other C++ unit testing tools available.
See Comparing Unit Testing Tools for a discussion of what’s important in
choosing a unit testing tool.

Most examples in this book use Google Mock for mocking and stubbing (see
Test Doubles). Of course, Google Mock and Google Test work together, but
you might also be able to integrate Google Mock successfully with your unit
testing tool of choice.

A Compiler

You’ll need access to a C++ compiler with support for C++11. The book
example code was originally built using gcc and works out of the box on Linux
and Mac OS. See Global Setup for information about building the example
code on Windows. All examples use the STL, an essential part of modern C++
development for many platforms.

Third-Party Libraries

Some of the examples use freely available third-party libraries. Refer to
Global Setup for the specific list of libraries you’ll need to download.

How to Use This Book

I designed the chapters in the book to function as stand-alone as possible.
You should be able to pick up a random chapter and work through it without
having to fully read any other chapters. I provide ample cross-references
throughout to allow you to jump around easily if you’re using an ereader.

• Click HERE to purchase this book now. discuss

How to Use This Book • ix

http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

Each chapter begins with a quick overview and ends with a chapter summary
plus a preview of the next chapter. I chose the names of these brief sections
to correspond cutely to the initialization and cleanup sections used by many
unit test frameworks—“Setup” and “Teardown.”

The Source

The book contains numerous code examples. Most of the code presented will
reference a specific filename. You can find the complete set of example code
for this book at http://pragprog.com/book/lotdd/modern-c-programming-with-test-driven-
development and also at my GitHub page, http://github.com/jlangr.

Within the code distribution, examples are grouped by chapter. Within the
directory for each chapter, you will find numbered directories, each number
effectively referring to a version number (which allows the book to use and
show examples of code changing as you progress through each chapter). As
an example, the code with caption c2/7/SoundexTest.cpp refers to the file Soundex-
Test.cpp located in the seventh revision of the Chapter 2 (c2) code directory.

Book Discussion

Please join the discussion forum at https://groups.google.com/forum/?fromgroups#!forum/
modern-cpp-with-tdd. The intent for the forum is to discuss the book as well as doing
TDD in C++ in general. I will also post useful information regarding the book.

If You Are New to TDD: What’s in the Book

While this book is geared to all, its primary focus is on programmers new to
TDD, so its chapters are in a correspondingly sequential order. I highly rec-
ommend you work through the exercise in Test-Driven Development: A First
Example. It will give you a strong feel for many of the ideas behind TDD as
you work through a meaty example. Don’t just read—type along and make
sure your tests pass when they should!

The next two chapters, Test-Driven Development Foundations and Test Con-
struction, are also essential reading. They cover core ideas about what TDD
is (and is not) and how to construct your tests. Make sure you’re comfortable
with the material in these chapters before learning about mocks (see the Test
Doubles chapter), a technique essential to building most production systems.

Don’t skip the chapter on design and refactoring (Incremental Design) just
because you think you know what that means. An essential reason to practice
TDD is to enable you to evolve your design and keep your code clean contin-
ually through refactoring. Most systems exhibit poor design and difficult code,
partly because developers aren’t willing to refactor enough or don’t know how.

• x

• Click HERE to purchase this book now. discuss

http://pragprog.com/book/lotdd/modern-c-programming-with-test-driven-development
http://pragprog.com/book/lotdd/modern-c-programming-with-test-driven-development
http://github.com/jlangr
https://groups.google.com/forum/?fromgroups#!forum/modern-cpp-with-tdd
https://groups.google.com/forum/?fromgroups#!forum/modern-cpp-with-tdd
http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

You’ll learn what’s far enough and how to start reaping the potential benefits
of a smaller, simpler system.

To wrap up core TDD techniques, Quality Tests takes a look at a number of
ways to improve your return on investment in TDD. Learning some of these
techniques can make the difference between surviving and thriving in TDD.

You’ll of course be saddled with the struggles of an existing system that wasn’t
test-driven. You can get a jump start on some simple techniques to tackle
your legacy code by reading Legacy Challenges.

Just past the legacy code material, you’ll find a chapter dedicated to test-driving
multithreaded code. The test-driven approach to TDD may surprise you.

The next chapter, Additional TDD Concepts and Discussions, dives deeper into
fairly specific areas and concerns. You’ll discover some up-to-date ideas
around TDD, including some alternate approaches that differ from what you’ll
find elsewhere in this book.

Finally, you’ll want to know what it takes to get TDD going in your team, and
you’ll of course want to make sure you’re able to sustain your investment in
TDD. The last chapter, Growing and Sustaining TDD, provides some ideas
that you will want to incorporate into your shop.

If You Have Some Experience with TDD

You can probably get away with picking up chapters at random, but you’ll
find a lot of nuggets of hard-earned wisdom strewn throughout the book.

Conventions Used in This Book

Any sizeable code segment will appear separately from the text. When the
text refers to code elements, the following conventions are used:

• A ClassName will appear in the same font as normal text (“text font”) and
will be UpperCamelCase.

• A TestName will also appear in the text font and be UpperCamelCase.
• All other code elements will appear in a code (nonproportional) font.

Examples of these include the following:

– functionName() (which will show an empty argument list, even if it refers
to a function declaring one or more parameters). I will sometimes refer
to member functions as methods.

– variableName
– keyword
– All other code snippets

• Click HERE to purchase this book now. discuss

How to Use This Book • xi

http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

To keep things simple and waste fewer pages, code listings will often omit
code irrelevant to the current discussion. A comment followed by ellipses
represents obscured code. For example, the body of the for loop is replaced
in this code snippet:

for (int i = 0; i < count; i++) {
// ...

}

About “Us”

I wrote this book to be a dialogue between us. Generally I’m talking to you,
as the reader. When I (ideally infrequently) refer to myself, it’s usually to
describe an experience-based opinion or preference. The implication is that
it might not be a widely accepted concept (but it could be a fine idea!).

When it gets down to coding, I’d rather you didn’t have to work alone, partic-
ularly since you’re trying to learn. We will work through all of the coding
exercises in the book together.

About Me

I’ve been programming since 1980, my junior year in high school, and profes-
sionally since 1982 (I worked at the University of Maryland while pursuing
my BS in computer science). I transitioned from programmer to consultant
in 2000, when I had the joy of working for Bob Martin and occasionally
alongside some great folks at Object Mentor.

I started Langr Software Solutions in 2003 to provide consulting and training
solutions related to Agile software development. Much of my work is either
pairing with developers doing TDD or teaching it. I insist on alternating
between consulting/training and being a “real” programmer on a real devel-
opment team so that I stay up-to-date and relevant. Since 2002, I have been
a full-time programmer in four different companies for significant durations.

I love writing about software development. It’s part of how I learn things in
depth, but I also enjoy helping others come up to speed on building quality
code. This is my fourth book. I wrote Essential Java Style: Patterns for
Implementation [Lan99] and Agile Java: Crafting Code With Test-Driven
Development [Lan05], and I co-wrote Agile in a Flash [OL11] with Tim Ottinger.
I also contributed a couple chapters to Uncle Bob’s Clean Code: A Handbook
of Agile Software Craftsmanship [Mar08]. I’ve written more than a hundred
articles published at sites other than mine. I write regularly for my own blog
(at http://langrsoft.com/jeff) and have written or contributed to more than a hundred
blog entries for the Agile in a Flash project at http://agileinaflash.com.

• xii

• Click HERE to purchase this book now. discuss

http://langrsoft.com/jeff
http://agileinaflash.com
http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

In addition to C++, I’ve programmed in several other languages extensively:
Java, Smalltalk, C, C#, and Pascal, plus one other that shall remain un-
mentioned. I’m currently learning Erlang and can code enough Python and
Ruby to survive. I’ve played with at least another dozen or so languages to
see what they were like (or to support some short-lived effort).

About the C++ Style in This Book

While I have extensive experience on C++ systems of all sizes, ranging from
small to extremely large, I don’t consider myself a language expert. I’ve read
the important books by Meyers and Sutter, plus a few more. I know how to
make C++ work for me and how to make the resulting code expressive and
maintainable. I’m aware of most of the esoteric corners of the language but
purposefully avoid solutions requiring them. My definition for clever in the
context of this book is “difficult to maintain.” I’ll steer you in a better direction.

My C++ style is very object-oriented (no doubt because of a lot of programming
in Smalltalk, Java, and C#). I prefer that most code ends up scoped to a class.
Most of the examples in this book fall in line with this style. For example, the
Soundex code from the first example (see Test-Driven Development: A First
Example) gets built as a class, but it doesn’t need to be. I like it that way, but
if it wads yer underwear, do it your way.

TDD can provide value regardless of your C++ style, so don’t let my style turn
you off to its potential. However, a heavier OO emphasis makes introducing
test doubles (see Test Doubles) easier when you must break problematic
dependencies. If you immerse yourself in TDD, you’ll likely find that your
style shifts more in this direction over time. It’s not a bad thing!

I’m a little lazy. Given the relatively small scope of the examples, I chose to
minimize the use of namespaces, though I would certainly incorporate them
on any real production code effort.

I also prefer to keep my code as streamlined as possible and thus avoid what
I sometimes view as visual clutter. In most implementation files, you’ll find
using namespace std; for this reason, although many consider that bad form.
(Keeping your classes and functions small and focused makes this and other
guidelines such as “All functions should have only one return” less useful.)
No worries; TDD won’t prevent you from sticking to your own standards, and
neither will I.

A final word on C++: it’s a big language. I’m certain there are better ways to
code some of the examples in the book, and I would bet that there are library
constructs I’m not taking advantage of. The beauty of TDD is that you’ll be

• Click HERE to purchase this book now. discuss

About the C++ Style in This Book • xiii

http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

able to rework an implementation a dozen different ways without fear of
breaking something. Regardless, please send me your suggestions for
improvement, but only if you’re willing to test-drive them!

Acknowledgments

Thanks to my editor, Michael Swaine, and the great folks at PragProg for the
guidance and resources needed to create this book.

Thanks, Uncle Bob, for the exuberant foreword!

Many thanks to Dale Stewart, my technical editor, for providing valuable
assistance throughout the process, particularly feedback and help on the
C++ code throughout the book.

I always ask for brutally honest feedback during the writing process, and Bas
Vodde provided exactly that, supplying me with voluminous feedback on the
entire book. He was the invisible pair partner I needed to keep the conversation
honest.

Special thanks to Joe Miller, who painstakingly converted most of the examples
so that they will build and run on Windows.

Many thanks to all the other folks who provided ideas or invaluable feedback:
Steve Andrews, Kevin Brothaler, Marshall Clow, Chris Freeman, George
Dinwiddie, James Grenning, Michael Hill, Jeff Hoffman, Ron Jeffries, Neil
Johnson, Chisun Joung, Dale Keener, Bob Koss, Robert C. Martin, Paul
Nelson, Ken Oden, Tim Ottinger, Dave Rooney, Tan Yeong Sheng, Peter
Sommerlad, and Zhanyong Wan. My apologies if I missed anyone.

Thank you to those who supplied feedback on the PragProg errata page:
Bradford Baker, Jim Barnett, Travis Beatty, Kevin Brown, Brett DiFrischia,
Jared Grubb, David Pol, Bo Rydberg, Jon Seidel, Marton Suranyi, Curtis
Zimmerman, and many others.

Thanks again to Tim Ottinger, who supplied some of the words in the intro-
duction plus a few ideas for the book. I missed having you as a co-conspirator!

Thank you all for helping make this book better than I could ever hope to
make it on my own!

Dedication

This book is dedicated to those who continue to support me in doing what I
love, particularly my wife, Kathy.

• xiv

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

