Extracted from:

Learn to Program, Third Edition

This PDF file contains pages extracted from Learn to Program, Third Edition, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-
back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

0@
Chris Pine

edited by Tammy Coron

The Facets £ of Ruby Series

Learn to Program, Third Edition

Chris Pine

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin

COO: Janet Furlow

Managing Editor: Tammy Coron
Development Editor: Tammy Coron
Copy Editor: Corina Lebegioara
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-817-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

cHAPTER 10

More Classes and Methods

So far, you've seen several kinds (or classes) of objects: strings, integers,
floats, arrays, a few special objects (true, false, and nil), and so on. In Ruby,
these class names are always capitalized: String, Integer, Float, Array, File, and Dir.
(Do you remember back on page ? when you asked the File class to open a
file for you, and it handed back an actual file, which you named, in a fit of
rabid creativity, f? Good times. And while you never ended up needing an
actual directory object from Dir, you could have gotten one if you'd asked

nicely.)

You used File.open to get a file back, but that’s actually a slightly unusual way
to get an object from a class. In general, you’ll use the new method:

Line1 alpha = Array.new + [12345] # Create empty array.

2 beta = String.new + "hello" # Create empty string.
3 karma = Time.new # Current date and time.
4
5 puts "alpha = #{alpha}"
6 puts "beta = #{beta}"
7 puts "karma = #{karma}"
¢ alpha = [12345]
beta = hello
karma = 2020-10-10 11:56:25 -0700
Because you can make arrays with array literals using [...], and you can make
strings with string literals using "...", you rarely create these using new. Also,

numbers are special exceptions: you can’t create an integer with Integer.new.
(Which number would it create, you know?) You can make one only using an
integer literal (that is, by typing it out as you've been doing). But aside from
a few exceptions, you normally create Ruby objects with new.

One way you could think of this is that a class is kind of like a cookie cutter:
every time you call new on that class, you get a new cookie that’s defined by

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ltp3
http://forums.pragprog.com/forums/ltp3

°6

the shape of that cookie cutter. You'd never try to take a bite out of a cookie
cutter, because a cookie cutter isn’t a cookie. Similarly, a class is a different
kind of thing from the objects it creates. (The String class isn’t a string. It’'s a
class, a sort of programmatic cookie cutter.)

Let’s take a tour of some other frequently-used classes, and learn what you
can do with the objects they create.

The Time Class

What'’s the story with this Time class? Time objects represent (you guessed it)
moments in time. You can add (or subtract) numbers to (or from) times to get
new times. So, adding 1.5 to a time object makes a new time one-and-a-half
seconds later:

Line1 time = Time.new # The moment this code was run.
2 soon = time + 60 # One minute later.

puts time
puts soon

(S, I V)

{ 2020-10-10 11:57:23 -0700
2020-10-10 11:58:23 -0700

You can also pass values into Time.new to construct a specific time:

Line1 puts Time.new(2000, 1, 1) # Y2K.
2 puts Time.new(1976, 8, 3, 13, 31) # When I was born.

{ 2000-01-01 00:00:00 -0800
1976-08-03 13:31:00 -0700

You'll notice the -0700 and -0800 in these times. That’s to account for the differ-
ence between the local time and Coordinated Universal Time, or UTC. The
difference between local time and UTC could be due to time zone or daylight
saving time or who knows what else. So, you can see that I was born in day-
light saving time, while it was not daylight saving time when Y2K struck. The
more values you pass in to new, the more specific your time becomes.

On the other hand, if you want to avoid time zones and daylight saving time
altogether and only use UTC, there’s always Time.utc:

Line1 puts Time.utc(1955, 11, 5) # A red-letter day.

¢ 1955-11-05 00:00:00 UTC

You can compare times using the comparison methods (an earlier time is less
than a later time), and if you subtract one time from another, you’ll get the
number of seconds between them. Play around with it.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ltp3
http://forums.pragprog.com/forums/ltp3

The Hash Class © 7

If you happen to be using an older version of Ruby, there’s this problem with
the Time class. It thinks the world began at epoch: the stroke of midnight,
January 1, 1970, UTC. I don’t know of any satisfying way of explaining this,
but here goes: at some point, probably before I was even born, some people
(Unix folks, I believe) decided that a good way to represent time on computers
was to count the number of seconds since the very beginning of the 70s. So,
time “zero” stood for the birth of that great decade, and they called it epoch.

This was all long before Ruby. In those ancient days (and programming in
those ancient languages), you often had to worry about your numbers getting
too large. In general, a number would either be from O to around 4 billion or
be from -2 billion to +2 billion, depending on how they chose to store it.

For whatever reasons (compatibility, tradition, cruelty...whatever), older ver-
sions of Ruby decided to go with these conventions. So (and this is the
important point), you couldn’t have times more than 2 billion seconds away
Jrom epoch. This restriction wasn’t too painful, though, because this span is
from sometime in December 1901 to sometime in January 2038.

In modern Ruby (versions 1.9.2 and up), you don’t need to worry about any
of this. Time can handle any time that has any meaning, from before the Big
Bang to after the heat death of the universe (or however this grand tale ends).

Here are some exercises for you to get more familiar with Time.

A Few Things to Try

* One billion seconds! Find out the exact second you were born, or as close
as you can get. Figure out when you’ll turn (or perhaps when you did
turn) one billion seconds old. Then go mark your calendar!

e Happy birthday! Ask what year a person was born, then the month, and
then the day. Figure out how old they are, and give them a © (smiley
emoji) for each birthday they've had.

The Hash Class

Another useful class is the Hash class. Hashes are a lot like arrays: they have
a bunch of slots that can point to various objects. But in an array, the slots
are lined up in a row, and each one is numbered (starting from zero). In a
hash, the slots aren’t in a row (they're sort of jumbled together), and you
can use any object to refer to a slot, not only a number. It’'s good to use
hashes when you have a bunch of things you want to keep track of, but

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ltp3
http://forums.pragprog.com/forums/ltp3

Line 1

°8

they don't fit into an ordered list. For example, you could store European

capitals like this:

caps_array = [] # array literal, same as Array.new

caps_hash = {} # hash literal,
caps_array[0] = "Oslo"
caps_array[1] = "Paris"
caps_array[2] = "Madrid"
caps_array[3] = "Rome"
caps_hash["Norway"] = "Oslo"
caps_hash["France"] = "Paris"
caps_hash["Spain" 1 = "Madrid"
caps_hash["Italy"] = "Rome"

caps array.each do |city|
puts city
end

caps_hash.each do |country, city|
puts "#{country}: #{city}"
end

Oslo

Paris

Madrid

Rome

Norway: Oslo
France: Paris
Spain: Madrid
Italy: Rome

same as Hash.new

If you use an array, you have to remember that slot 0 is for "Oslo", slot 1 is for
"Paris", and so on. But if you use a hash, it’s easy. Slot "Norway" holds the name
"Oslo", of course. There’s nothing to remember. You might have noticed that

when you used each, the objects in the hash came out in the same order you

put them in. Older versions of Ruby (1.8 and earlier) didn't work this way, so

if you have an older version installed, be aware of this (or better yet, simply

upgrade).

That last example included an empty hash literal, and populated it with
European capitals one at a time. But as with arrays, you can populate a hash

using only the literal:

greetings

["hello" , ”hOWdy" , nhiu]

array literal

smoothies = {"mango" => "yum", "garlic" => "yuck"} # hash literal

puts greetings
puts smoothies
puts smoothies["mango"]

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ltp3
http://forums.pragprog.com/forums/ltp3

The Range Class ® 9

< hello
howdy
hi
{"mango"=>"yum", "garlic"=>"yuck"}
yum

Though people usually use strings to name the slots in a hash, you could use
any kind of object, even arrays and other hashes:

Lline1 weird_hash = Hash.new

3 weird hash[12] = "monkeys"
4 weird_hash[[]] = "the void"
5 weird hash[Time.new] = "no time like the present"

Hashes and arrays are good for different things. It’s up to you to decide which
one is best for a particular problem. Are you storing things that are sequential
or ordered? Then an array makes most sense. Is it more like a collection of
different things? Then consider using a hash. In general, arrays are better
for collections of the same kind of thing, while hashes are better for collections
of different kinds of things:

Line1 myself = {"name" => "Chris", "pairs of shoes" => 17}
2 imelda = {"name" => "Imelda", "pairs of shoes" => 3400}
3
4 people = [myself, imelda]

Names and numbers of pairs of shoes aren’t the same kind of thing at all, so
we store those together in a hash. But those two hashes are both representing
people (at least a little bit about them), so we use an array to group the people-
hashes together.

I probably use hashes at least as often as arrays. They're wonderful.

The Range Class

Range is another great class. Ranges represent intervals of numbers. Usually.
(You can also make ranges of strings, times, or pretty much anything else
you can place in an order—where you can say things like this < that and such.
In practice, I never use ranges for anything but integers.)

Let’s make some range literals and see what they can do:

Line1 # This is a range literal.
- numbers = 1..5

- # Convert range to array.
5 puts([1l, 2, 3, 4, 5] == numbers.to_a)

- # Iterate over a range of strings:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ltp3
http://forums.pragprog.com/forums/ltp3

°10

("a".."z").each do |letter|
print letter
end
- puts

- god bless the 90s = 1990..1999
- puts god bless the 90s.min

puts god bless the 90s.max

- puts(god bless the 90s.include?(1999))
- puts(god bless the 90s.include? (2000))
- puts(god bless the 90s.include?(1994.5))

true
abcdefghijklmnopqrstuvwxyz
1990

1999

true

false

true

Do you really need ranges? No, not really. You could write programs without
them. It's the same with hashes and times, I suppose. But it’s all about style,
intention, and capturing snapshots of your brain right there in your code.

And this is all just the tip of the iceberg. Each of these classes has way more
methods than covered here, and this isn’t even a tenth of the classes that
come with Ruby. But you don’t need most of them. They are simply time-
savers. You can pick them up gradually as you go. That’s how most of us
do it.

Now that you've learned about Time, Hash, and Range, let’s revisit String. I'd feel
like I was doing you a disservice if we didn’t look a little more at what you
can do with strings. Plus, if we do, I can give you more interesting exercises.
Mind you, we're still not going to cover even half of the string methods, but
you've got to see a little more.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ltp3
http://forums.pragprog.com/forums/ltp3

