
Extracted from:

Learn to Program, Third Edition

This PDF file contains pages extracted from Learn to Program, Third Edition, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com






Learn to Program, Third Edition

Chris Pine

The Pragmatic Bookshelf
Raleigh, North Carolina



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Tammy Coron
Copy Editor: Corina Lebegioara
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-817-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com


CHAPTER 4

Conversions and Input
So far, you’ve seen objects like integers, floats, and strings, and you’ve set
up variables to point to these objects. Now it’s time for you to get them all to
play nicely together.

Let’s suppose you have a program that you want to print 25. Using the follow-
ing code won’t work because you can’t add numbers and strings together:

var1 = 2Line 1

var2 = "5"2

puts var1 + var23

Part of the problem is that Ruby doesn’t know if you were trying to print 7 (2
+ 5) or 25 ("2" + "5"), so it’s your job to specify which. But before you can do
that, there’s something else you need to do first.

To add the values together in some meaningful way, you first need to convert
the objects to be the same type. In other words, you need to get the string
version of the integer—in this case var1—or the integer version of the string—
in this case var2.

Let’s look at how you do that.

Numbers to Strings and Back Again
To get the string version of an object, you simply write .to_s after it like this:

var1 = 2Line 1

var2 = "5"2

puts var1.to_s + var23

25❮

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/ltp3
http://forums.pragprog.com/forums/ltp3


Similarly, appending .to_i gives the integer version of an object, and .to_f gives
the float version. Let’s look at what these methods do (and don’t do) a little
more closely:

var1 = 2Line 1

var2 = "5"2

puts var1.to_s + var23

puts var1 + var2.to_i4

25❮

7

Notice that, even after you got the string version of var1 by calling to_s, var1
was always pointing at 2 and never at "2". Unless you explicitly reassign var1
(which requires an = sign), it’ll continue to point at 2 for the life of the program.

Let’s try some more interesting (and a few just plain weird) conversions:

puts "15".to_fLine 1

puts "99.999".to_f2

puts "99.999".to_i3

puts ""4

puts "5 is my favorite number!".to_i5

puts "Who asked you about 5 or whatever?".to_i6

puts "Your mama did.".to_f7

puts ""8

puts "stringy".to_s9

puts 3.to_i10

15.0❮

99.999
99

5
0
0.0

stringy
3

So, this program probably gave you some surprises. The conversion on line
1 is pretty standard, giving 15.0. After that, you converted the string "99.999"
to a float and to an integer. The float did what was expected; the integer was,
as always, rounded down.

Next, you had examples of some unusual strings being converted into numbers.
On line 5, to_i ignores the first thing it doesn’t understand (and the rest of the
string from that point on). So the string on line 5 was converted to 5; but on
lines 6 and 7, since those strings started with letters, they were ignored
completely. When this happens, Ruby picks zero.

• 6

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/ltp3
http://forums.pragprog.com/forums/ltp3


Finally, you saw that the last two conversions did nothing at all, as you’d
expect.

Let Me Tell You a Secret
There’s something strange about the puts method. Have a look at this:

puts 20Line 1

puts 20.to_s2

puts "20"3

20❮

20
20

Why do these three all print the same thing? Well, the last two should, since
20.to_s is "20". But what about the first example, the integer 20? For that matter,
what does it even mean to write the integer 20? When you write a 2 and then
a 0 on a piece of paper, you’re writing a string, not an integer. The integer 20
is the number of fingers and toes I have; it isn’t a 2 followed by a 0.

Well, here’s the big secret behind the puts method: before puts tries to write
out an object, it uses to_s to get the string version of that object. In fact, the
s in puts stands for string; puts actually means put string.

And here’s a bonus secret: string interpolation does the same thing. Check
it out:

puts "my favorite number really is #{2+3}"Line 1

my favorite number really is 5❮

This actually ends up being convenient, as it’s one less conversion that you
have to think about.

Now let’s check out how you can get strings directly from the user, which will
allow you to write all sorts of fun programs.

Getting Strings from the User
To get strings from the user, you use the gets method. If puts means put string,
you can probably guess what gets means. And just as puts always spits out
strings, gets retrieves only strings. So, where do these strings come from?

From you—well, from your keyboard, anyway! Of course, since your keyboard
makes only strings, that works out beautifully. What actually happens is that
gets simply sits there, reading what you type until you press Enter . Try it out:

• Click  HERE  to purchase this book now.  discuss

Let Me Tell You a Secret • 7

http://pragprog.com/titles/ltp3
http://forums.pragprog.com/forums/ltp3


puts getsLine 1

Is there an echo in here?➾

Is there an echo in here?❮

As expected, whatever you type will get repeated back to you. Run it a few
times and try typing different things.

Did It Work?

Maybe you didn’t need any help installing Ruby, so you skipped
Chapter 1. Hey, no problem.

Maybe you’ve done a little programming before, so you skipped
Chapter 2. That’s totally fine.

The only thing is that you missed some stuff there that you need
to know now. If you haven’t been running your programs from the
command line, then you’ll almost certainly have problems with
gets, and you’re going to be using it a lot from now on. So, if you
saved your program as example.rb, you should run your program
by typing ruby example.rb into your command line. If you’re having
trouble getting around on your command line, refer to the OS-
specific appendix at the back of this book.

Now that you know how to use gets, you can make interactive programs. These
will be way more interesting than the programs you’ve written so far. Still,
one issue remains with gets that’ll bite you, so let’s look at what it is and how
to avoid it.

Cleaning Up User Input
Let’s make a program that greets you by name. Write the following program:

puts "Hello there, and what's your name?"Line 1

name = gets2

puts "Your name is #{name}? What a lovely name!"3

puts "Pleased to meet you, #{name}. :)"4

I ran it, and this is what happened:

Hello there, and what's your name?❮

Chris➾

Your name is Chris❮

? What a lovely name!
Pleased to meet you, Chris
. :)

• 8

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/ltp3
http://forums.pragprog.com/forums/ltp3


Yikes! This program first prompts for a name, and then it prints a message.
But something’s wrong. When I typed the letters C , h , r , i , and s , and then
pressed Enter , the gets method got all of the letters in my name and the Enter .
Well, that’s not good. Fortunately, there’s a method that deals with exactly
this sort of thing: chomp. The chomp method takes off any newline characters
hanging out at the end of your string. Let’s try that program again, but this
time using chomp to help tidy up the response:

puts "Hello there, and what's your name?"Line 1

name = gets.chomp2

puts "Your name is #{name}? What a lovely name!"3

puts "Pleased to meet you, #{name}. :)"4

Hello there, and what's your name?❮

Chris➾

Your name is Chris? What a lovely name!❮

Pleased to meet you, Chris. :)

Much better. Notice that since name is pointing to gets.chomp, you don’t ever
have to say name.chomp; name was already chomped. (Of course, if you did chomp
it again, it wouldn’t do anything; it has no more Enter  characters to chomp off.
You could chomp on that string all day, and it wouldn’t change it. Like week-
old bubble gum.)

Now you’re ready to write your own truly interactive programs! Try it out with
these exercises. (Or ignore these and try it out with your own ideas. That
works, too.)

A Few Things to Try
• Full name greeting. Write a program that asks for a person’s first name,

then middle name, and then last name. Finally, have the program greet
the person using their full name.

• Bigger, better favorite number. Write a program that asks for a person’s
favorite number. Have your program add 1 to the number, and then suggest
the result as a bigger and better favorite number. (Please be tactful about
it, though.)

• Click  HERE  to purchase this book now.  discuss

Cleaning Up User Input • 9

http://pragprog.com/titles/ltp3
http://forums.pragprog.com/forums/ltp3

