
Extracted from:

Design and Build Great Web APIs
Robust, Reliable, and Resilient

This PDF file contains pages extracted from Design and Build Great Web APIs,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Design and Build Great Web APIs
Robust, Reliable, and Resilient

Mike Amundsen

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Copy Editor: Molly McBeath
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-680-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

One of the challenges of designing APIs is that so many results are possible.
Design, like art, is pretty much in the eye of the beholder. What some find
beautiful or correct, others find lacking. If you get a group of five API develop-
ers together to review the same user interview information we gathered in the
previous chapter, you’re likely to end up with five different API designs. And
that’s normal. We don’t all need to agree on the exact details of every API you
and your company release. However, we do need to agree on some things and
on a general process to use to design the APIs.

In this chapter, we’ll explore the notion of design thinking using patterns like
“jobs to be done,” and we’ll look at a simple API design method you can apply
to make sure your API designs are consistent. Finally, you’ll learn how to
render your API designs with sequence diagrams to help visualize the API
before you start writing the code.

The Power of Design
Art, architecture, and design all rely on the unique traits of the individual in
order to turn out the final result—the building, the canvas, the musical score,
or the API. Even though the final results rarely look the same from person to
person, artists and designers often share a similar method or style when they
go through the process of creating their work. And it’s this process or method
that can be described and standardized. When we all use the same general
method, even when we come to different final results, those results are very
likely to be compatible—they work together easily. This is the power of a good
design process. It allows people to continue to think for themselves, to con-
tribute in unique ways, and still come up with results that are compatible
across the organization.

Creating compatible solutions is an important element of a healthy API pro-
gram. In most companies, the API program will span many years, have lots
of different people involved, and over time use several different technologies
and products. Throughout all those changes, one of the things you can keep
as a constant is your design process or method. By teaching your developers
the same design method, you gain consistency without overconstraining their
creativity.

A good design method also doesn’t assume any single technology stack or
tool set. That means you’ll be able to grow an API program over time that’s
built on the power of consistent design methods and not reliant on any one
API format or protocol or other technical elements. In fact, good design process
makes it easier to change tooling over time without introducing incompatible
implementations.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/maapis
http://forums.pragprog.com/forums/maapis

So design helps you bring consistency and compatibility to your API program.
But how does that happen? Two key elements of any successful design pro-
gram are these:

• Design thinking: The way people think about the process of designing
an API

• Jobs to be done: A focus on the tasks your API users are trying to
accomplish

Before jumping right into our API design method, let’s take a moment to review
design thinking and jobs to be done in a bit more depth.

Design Thinking
The phrase “design thinking” is used quite a bit in product design to identify
a point of view and a collection of practices that help people think differently
about the way they design and build products. Tim Brown, one-time CEO of
the design firm IDEO, describes design thinking as “a design discipline that
uses the designer’s sensibility and methods to match people’s needs with
what is technologically feasible and what a viable business strategy can convert
into customer value and market opportunity.”1 The key words in that quote
are “match people’s needs” and “viable business strategy.”

While we may not think about it much, APIs are really meant to do both those
things. They need to match people’s needs and they need to support a viable
business strategy. The people we need to pay attention to when designing
APIs are often not just end users but also developers. Knowing your audience
well is key to creating APIs that do a good job of solving the problem. For
example, designing APIs for internal use by your own team is different than
designing APIs for developers working for your customers or partners. Each
is likely to have a different point of view, different set of skills, and different
priorities.

Creating something that supports a viable business strategy or goal is
important too. It’s not a good idea to set out to design and build a bunch of
APIs without knowing there is an audience for them and a business problem
to be solved. Just creating APIs to say you have APIs is not a viable strategy.
At the same time, building APIs that no one asked for, that no one really
needs, is also a bad idea. I’ve seen API teams work hard to get funding from
leadership, then work hard to build and release generic APIs that no one
requested, only to find that company leaders complain that the new APIs

1. https://hbr.org/2008/06/design-thinking

• 6

• Click HERE to purchase this book now. discuss

https://hbr.org/2008/06/design-thinking
http://pragprog.com/titles/maapis
http://forums.pragprog.com/forums/maapis

aren’t what they need and thus go unused. This isn’t a viable business
strategy.

What does it take to build APIs that “match people’s needs” and support a
“viable business strategy”? That is where the concept of “jobs to be done”
can help.

Jobs to Be Done
An important reason to design and build an API is to solve a problem—to
“match people’s needs.” In Chapter 3, Modeling APIs, on page ?, we worked
to discover the problem (onboarding new customers). In our case, the customer
onboarding work is a job that needs to be done. That’s what Harvard professor
and author of the books Innovator’s Dilemma and Innovator’s Solution Clayton
Christensen calls “jobs to be done.”2 He says, “People don’t simply buy prod-
ucts or services, they ‘hire’ them to make progress in specific circumstances.”
Translated into API terms, developers want to make progress (solve problems)
and they’ll use (or hire) whatever APIs will help them do that.

This means that designing APIs to solve existing problems is essential. Every
organization, large and small, has problems that need to be solved. Focusing
on them and figuring out how APIs can help is a good strategy for a number
of reasons.

First, when you uncover problems to be solved, you’re tapping into an
opportunity to make things better. When you can create an API that makes
work easier, safer, faster, and so on, that’s a win. Second, when you complete
an API that solves a problem, it’s easy to know if you reached your goal. The
truth is that sometimes our APIs don’t work as we expected and may not
actually do a good job of solving the stated problem. When that happens, we
need to learn from our attempt and then move on to design and build an API
that does solve the problem. When you start with the problem, it’s easier to
measure your success.

And measuring success is how you make sure your API supports a viable
business strategy.

Business Viable
As mentioned earlier, it doesn’t make sense to invest a lot of time and money
into an API no one really wants or needs. That’s why “matching people’s needs”
is an important element of good API design. Another important element to

2. https://www.christenseninstitute.org/jobs-to-be-done

• Click HERE to purchase this book now. discuss

The Power of Design • 7

https://www.christenseninstitute.org/jobs-to-be-done
http://pragprog.com/titles/maapis
http://forums.pragprog.com/forums/maapis

good API work is making sure the design and implementation work makes
good business sense. This can be a challenge since it’s common for API
designers and developers to be a bit “out of the loop” when it comes to business
details. In fact, I know many programmers prefer it that way. But in reality,
all of us working on IT projects for our companies have a responsibility to
make sure the work makes good sense both technically and business-wise.

While developers aren’t often the ones who decide business strategy, we
influence what time and money goes into executing on that strategy. In my
experience, there’s more than enough opportunity to improve the way compa-
nies use APIs in their business. In fact, the challenge is not in finding an API
opportunity, the challenge is in prioritizing the many existing opportunities.
And that’s a place where developer teams and API designers can help.

Starting an API project often represents a risk. It requires a commitment of
time, money, and personnel. Working on one project can mean not working
on other API projects. And the more time and money your API project con-
sumes, the less is available for other projects. For this reason, one of the best
things you can do when designing APIs is to reduce the risk incurred. You
can do this by building an API that matches people’s needs and has enough
flexibility built in to allow for small changes in the future without big costs.
That’s a lot to think about. But as time goes on, I’ve found most API developers
get pretty good at balancing matching needs versus anticipating changes.
We’ll see examples of this trade-off throughout the API design and build we’ll
be doing in this book.

Basically, those who are tasked with designing and building the APIs—the
glue that makes services work well together—have the job of uncovering
important needs and figuring out how to implement the APIs in a way that
makes sense both now and for the foreseeable future. We started on that path
in Chapter 3, Modeling APIs, on page ?, by uncovering the job that needs
to be done (the OnBoarding API), and now we need to turn what we learned
into a clear, concise API design that developers can use to successfully build
the final product.

To make that possible, we’ll first use a repeatable method—an API design
method—to convert our information into a design. Then we’ll take the output
of that method and produce a helpful diagram (a sequence diagram) that
documents our design and provides developers with added information they
can use to actually build the API we need.

First, let’s look at the API design method.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/maapis
http://forums.pragprog.com/forums/maapis

