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This book is dedicated to the memory of my father, Irving
Carroll (zt"l). He set me on the road to becoming a math
geek, which is why this book exists. More importantly,
he showed me, by example, how to be a mensch: by living

honestly, with compassion, humor, integrity,
and hard work.
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Cantor’s Diagonalization:
Infinity Isn’t Just Infinity

Set theory is unavoidable in theworld ofmodernmathemat-
ics. Math is taught using sets as the most primitive building
block. Starting in kindergarten, children are introduced to
mathematical ideas using sets! Since we’ve always seen it
presented that way, it’s natural that we think about set the-
ory in terms of foundations. But in fact, when set theorywas
created, that wasn’t its purpose at all. Set theorywas created
as a tool for exploring the concept of infinity.

Set theory was invented in the nineteenth century by a bril-
liant German mathematician named Georg Cantor
(1845–1918). Cantor was interested in exploring the concept
of infinity and, in particular, trying to understand how
infinitely large things could be compared. Could there pos-
sibly bemultiple infinities? If there were, how could it make
sense for them to have different sizes? The original purpose
of set theory was as a tool for answering these questions.

The answers come from Cantor’s most well-known result,
known as Cantor’s diagonalization, which showed that there
were at least two different sizes of infinity: the size of the
set of natural numbers and the size of the set of real numbers.
In this chapter, we’re going to look at how Cantor defined
set theory and used it to produce the proof. But before we
can do that, we need to get an idea of what set theory is.
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Sets, Naively

What Cantor originally invented is now known as naive set
theory. In this chapter, we’ll start by looking at the basics of
set theory using naive set theory roughly theway that Cantor
defined it. Naive set theory is easy to understand, but as
we’ll see in Section 16.3,Don't Keep It Simple, Stupid, on page
15, it’s got some problems. We’ll see how to solve those
problems in the next chapter; but for now, we’ll stick with
the simple stuff.

A set is a collection of things. It’s a very limited sort of collec-
tion where you can only do one thing: ask if an object is in
it. You can’t talk about which object comes first. You can’t
even necessarily list all of the objects in the set. The only
thing you’re guaranteed to really be able to do is ask if spe-
cific objects are in it.

The formalmeaning of sets is simple and elegant: if an object
is a member of a set S, then there’s a predicate PS, where an
object o is a member of S (written o ∈ S) if and only if PS(o)
is true. Another way of saying that is that a set S is a collec-
tion of things that all share some property, which is the
defining property of the set. When you work through the
formality of what a property means, that’s just another way
of saying that there’s a predicate. For example, we can talk
about the set of natural numbers: the predicate IsNaturalNum-
ber(n) defines the set.

Set theory, as we can see even from the first definition, is
closely intertwined with first-order predicate logic. In gen-
eral, the two can form a nicely closed formal system: sets
provide objects for the logic to talk about, and logic provides
tools for talking about the sets and their objects. That’s a big
part of why set theory makes such a good basis for mathe-
matics—it’s one of the simplest things that we can use to
create a semantically meaningful complete logic.

I’m going to run through a quick reminder of the basic
notations and concepts of FOPL; for more details, look back
at Part IV, Logic, on page ?.

In first-order predicate logic, we talk about two kinds of
things: predicates and objects. Objects are the things that we
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can reason about using the logic; predicates are the things
that we use to reason about objects.

A predicate is a statement that says something about some
object or objects. We’ll write predicates as either uppercase
letters or as words starting with an uppercase letter (A, B,
Married), and we’ll write objects in quotes. Every predicate
is followed by a list of comma-separated objects (or variables
representing objects).

One very important restriction is that predicates are not objects.
That’s why this is called first-order predicate logic: you can’t
use a predicate tomake a statement about another predicate.
So you can’t say something like Transitive(GreaterThan): that’s
a second-order statement, which isn’t expressible in first-
order logic.

We can combine logical statements using and (written ∧) and
or (∨). We can negate a statement by prefixing it with not
(written ¬). And we can introduce a variable to a statement
using two logical quantifiers: for all possible values (∀), and
for at least one value (∃).

When you learned about sets in elementary school, youwere
probably taught about another group of operations that
seemed like primitives. In fact, they aren’t really primitive:
The only things that we need to define naive set theory is
the one definition we gave! All of the other operations can
be definedusing FOPL andmembership.We’llwalk through
the basic set operations and how to define them.

The basics of set theory give us a small number of simple
things that we can say about sets and their members. These
also provide a basic set of primitive statements for our FOPL:

Subset

S ⊆ T

S is a subset of T, meaning that all members of S are also
members ofT. Subset is really just the set theory version
of implication: if S is a subset of T, then in logic, S⇒ T.

For example, let’s look at the setN of natural numbers and
the set N2 of even natural numbers. Those two sets are
defined by the predicates IsNatural(n) and IsEvenNatural(n).
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When we say that N2 is a subset of N, what that means is
∀ x: IsEvenNatural(x)⇒ IsNatural(x).

Set Union

A ∪ B

Union combines two sets: the members of the union are
all of the objects that are members of either set. Here it
is in formal notation:

x ∈ (A ∪ B) ≨ x ∈ A ∨ x ∈ B

The formal definition also tells you what union means
in terms of logic: union is the logical or of two predicates.

For example, if we have the set of even naturals and the
set of odd naturals, their union is the set of objects that
are either even naturals or odd naturals: an object x is
in the union (EvenNatural ∪ OddNatural) if either
IsEvenNatural(x) or IsOddNatural(x).

Set Intersection

A ∩ B

The intersection of two sets is the set of objects that are
members of both sets. Here it is presented formally:

x ∈ A ∩ B ≨ x ∈ A ∧ x ∈ B

As you can see from the definition, intersection is the
set equivalent of logical and.

For example, EvenNatural ∩ OddNatural is the set of
numbers xwhere EvenNatural(x) ∧OddNatural(x). Since
there are no numbers that are both even and odd, that
means that the intersection is empty.

Cartesian Product

A × B
(x, y) ∈ A × B ≨ x ∈ A ∧ y ∈ B

Finally, within themost basic set operations, there’s one
called the Cartesian product. This one seems a bit weird,
but it’s really pretty fundamental. It’s got two purposes:
first, in practical terms, it’s the operation that lets us
create ordered pairs, which are the basis of howwe can
create virtually everything that we want using sets. In
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purely theoretical terms, it’s the way that set theory
expresses the concept of a predicate that takesmore than
one parameter. The Cartesian product of two sets S and
T consists of a set of pairs, where each pair consists of
one element from each of the two sets.

For example, in 12, Mr. Spock Is Not Logical, on page ?,
we defined a predicate Parent(x, y), which meant that x
is a parent of y. In set theory terms, Parent is a set of pairs
of people. So Parent is a subset of the values from the
Cartesian product of the set of people with itself. (Mark,
Rebecca) ∈ Parent, and Parent is a predicate on the set
Parent × Parent.

That’s really the heart of set theory: set membership and the
linkagewith predicate logic. It’s almost unbelievably simple,
which is why it’s considered so darned attractive by mathe-
maticians. It’s hard to imagine how you could start with
something simpler.

Now that you understand how simple the basic concept of
a set is, we’ll move on and see just how deep and profound
that simple concept can be by taking a look at Cantor’s
diagonalization.

Cantor’s Diagonalization

The original motivation behind the ideas that ended up
growing into set theory was Cantor’s recognition of the fact
that there’s a difference between the size of the set of natural
numbers and the size of the set of real numbers. They’re
both infinite, but they’re not the same!

Cantor’s original idea was to abstract away the details of
numbers. Normally whenwe think of numbers, we think of
them as being things that we can do arithmetic with, things
that can be compared and manipulated in all sorts of ways.
Cantor said that for understandinghowmanynumbers there
were, none of those properties or arithmetic operationswere
needed. The only thing that mattered was that a kind of
number like the natural numbers was a collection of objects.
What mattered is which objects were parts of which collec-
tion. He called this kind of collection a set.
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Using sets allowed him to invent a new way of defining a
way of measuring size that didn’t involve counting. He said
that if you can take two sets and show how to create a
mapping from every element of one set to exactly one ele-
ment of the other set, and if this mapping didn’t miss any
elements of either set (a one-to-one mapping between the two
sets), then those two sets are the same size. If there is noway
tomake a one-to-onemappingwithout leaving out elements
of one set, then the set with extra elements is the larger of
the two sets.

For example, if you take the set {1, 2, 3}, and the set {4, 5, 6},
you can create several different one-to-one mappings
between the two sets: for example, {1⇒ 4, 2⇒ 5, 3⇒ 6}, or
{1⇒ 5, 2⇒ 6, 3⇒ 4}. The two sets are the same size, because
there is a one-to-one mapping between them.

In contrast, if you look at the sets {1, 2, 3, 4} and {a, b, c},
there’s no way that you can do a one-to-one mapping with-
out leaving out one element of the first set; therefore, the
first set is larger than the second.

This is cute for small, finite sets like these, but it’s not
exactly profound. Creating one-to-one mappings between
finite sets is laborious, and it always produces the same
results as just counting the number of elements in each set
and comparing the counts.What’s interesting about Cantor’s
method of using mappings to compare the sizes of sets is
that mappings can allow you to compare the sizes of
infinitely large sets, which you can’t count!

For example, let’s look at the set of natural numbers (N) and
the set of even natural numbers (N2). They’re both infinite
sets. Are they the same size? Intuitively, people come up
with two different answers for whether one is larger than
the other.

1. Somepeople say they’re both infinite, and therefore they
must be the same size.

2. Other people say that the even naturalsmust be half the
size of the naturals, because it skips every other element
of the naturals. Since it’s skipping, it’s leaving out ele-
ments of the naturals, so it must be smaller.
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Which is right? According to Cantor, both are wrong. Or
rather, the second one is completely wrong, and the first is
right for the wrong reason.

Cantor says that you can create a one-to-one mapping
between the two:

{ (x ≫ y) : x, y ∈ N, y = 2 × x }

Since there’s a one-to-one mapping, that means that they’re
the same size—they’re not the same size because they’re
both infinite, but rather because there is a one-to-one map-
ping between the elements of the set of natural numbers and
the elements of the set of even natural numbers This shows
us that some infinitely large sets are the same size as some
other infinitely large sets. But are there infinitely large sets
whose sizes are different? That’s Cantor’s famous result,
which we’re going to look at.

Cantor showed that the set of real numbers is larger than
the set of natural numbers. This is a very surprising result.
It’s one that people struggle with because it seemswrong. If
something is infinitely large, how can it be smaller than
something else? Even today, almost 150 years after Cantor
first published it, this result is still the source of much con-
troversy (see, for example, this famous summary [Hod98].)
Cantor’s proof shows that no matter what you do, you can’t
create a one-to-one mapping between the naturals and the
reals without missing some of the reals; and therefore, the
set of real numbers is larger than the set of naturals.

Cantor showed that everymapping from the naturals to the
reals must miss at least one real number. The way he did
that is by using something called a constructive proof. This
proof contains a procedure, called a diagonalization, that takes
a purported one-to-one mapping from the naturals to the
reals and generates a real number that is missed by the
mapping. It doesn’t matter what mapping you use: given
any one-to-one mapping, it will produce a real number that
isn’t in the mapping.

We’re going to go through that procedure. In fact, we’re
going to show something even stronger than what Cantor
originally did. We’re going to show that there are more real
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numbers between zero and one than there are natural
numbers!

Cantor’s proof is written as a basic proof by contradiction.
It starts by saying “Suppose that there is a one-to-one map-
ping from the natural numbers to the real numbers between
zero and one.” Then it shows how to take that supposed
mapping and use it to construct a real number that ismissed
by the mapping.

Example: Prove that there are more real numbers between 0 and
1 than there are natural numbers.

1. Suppose thatwe can create a one-to-one correspondence
between the natural numbers and the reals between 0
and 1. What that would mean is that there would be a
total one-to-one function R from the natural numbers
to the reals. Then we could create a complete list of all
of the real numbers: R(0), R(1), R(2), ....

2. If we could do that, then we could also create another
function, D (for digit), where D(x,y) returns the yth
digit of the decimal expansion of R(x). The D that we
just created is effectively a table where every row is a
real number and every column is a digit position in the
decimal expansion of a real number. D(x,3) is the third
digit of the binary expansion of x.

For example, if x = 3/8, then the decimal expansion of x
is 0.125. Then D(3/8,1) = 1, D(3/8,2) = 2, D(3/8,3) = 5,
D(3/8,4) = 0, ...

3. Now here comes the nifty part. Take the table forD and
start walking down the diagonal. We’re going to go
down the table looking at D(1,1), D(2,2), D(3,3), and so
on. And as we walk down that diagonal, we’re going to
write down digits. If theD(i, i) is 1, we’ll write a 6. If it’s
2, we’ll put 7; 3, we’ll put 8; 4⇒ 9; 5⇒ 0; 6⇒ 1; 7⇒ 2;
8⇒ 3; 9⇒ 4; and 0⇒ 5.

4. The result that we get is a series of digits; that is, a deci-
mal expansion of some number. Let’s call that number
T. T is different from every row in D in at least one dig-
it—for the ith row, T is different at digit i. There’s no x
where R(x) = T.
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But T is clearly a real number between 0 and 1: the
mapping can’t possibly work. And since we didn’t
specify the structure of the mapping, but just assumed
that there was one, that means that there’s no possible
mapping that will work. This construction will always
create a counterexample showing that the mapping is
incomplete.

5. Therefore, the set of all real numbers between 0 and 1
is strictly larger than the set of all natural numbers.

That’s Cantor’s diagonalization, the argument that put set
theory on the map.

Don’t Keep It Simple, Stupid

There’s an old mantra among engineers called the KISS
principle. KISS stands for “Keep it simple, stupid!” The idea
is that when you’re building something useful, you should
make it as simple as possible. The more moving parts
something has, themore complicated corners it has, themore
likely it is that an error will slip by.

Looked at from that perspective, naive set theory looks great.
It’s so beautifully simple. What I wrote in the last section
was the entire basis of naive set theory. It looks like you
don’t need any more than that!

Unfortunately, set theory in practice needs to be a lot more
complicated. In the next section, we’ll look at an axiomatiza-
tion of set theory, and yeah, it’s going be a whole lot more
complicated thanwhatwe did here!Why can’twe stickwith
the KISS principle, use naive set theory, and skip that hairy
stuff?

The sad answer is, naive set theory doesn’t work.

In naive set theory, any predicate defines a set. There’s a
collection ofmathematical objects thatwe’re reasoning about,
and from those, we can form sets. The sets themselves are
also objects that we can reason about. We did that a bit
already by defining things like subsets, because a subset is
a relation between sets.

By reasoning about properties of sets and relations between
sets, we can define sets of sets. That’s important, because
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sets of sets are at the heart of a lot of the things that we do
with set theory. As we’ll see later, Cantor came up with a
way of modeling numbers using sets where each number is
a particular kind of structured set.

If we can define sets of sets, then using the samemechanism,
we can create infinitely large sets of sets, like “the set of sets
with infinite cardinality,” also known as the set of infinite
sets. How many sets are in there? It’s clearly infinite. Why?
Here’s a sketch: if I take the set of natural numbers, it’s infi-
nite. If I remove the number 1 from it, it’s still infinite. So
now I have two infinite sets: the natural numbers, and the
natural numbers omitting 1. I can do the same for every
natural number, which results in an infinite number of infi-
nite sets. So the set of sets with infinite cardinalities clearly
has infinite cardinality! Therefore, it’s a member of itself!

If I can define sets that contain themselves, then I can write
a predicate about self-inclusion and end up defining things
like the set of all sets that include themselves. This is where
trouble starts to crop up: if I take that set and examine it,
does it include itself? It turns out that there are two sets that
match that predicate! There’s one set of all sets that include
themselves that includes itself, and there’s another set of all
sets that include themselves that does not include itself.

A predicate that appears to be a proper, formal, unambiguous
statement in FOPL turns out to be ambiguous when used to
define a set. That’s not fatal, but it’s a sign that there’s
something funny happening that we should be concerned
about.

But now, we get to the trick. If I can define the set of all sets
that contain themselves, I can also define the set of all sets
that do not contain themselves.

And that’s the heart of the problem, called Russell’s paradox.
Take the set of all sets that do not include themselves. Does
it include itself?

Suppose it does. If it does, then by its definition, it cannot be
a member of itself.

So suppose it doesn’t. Then by its definition, it must be a
member of itself.
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We’re trapped. No matter what we do, we’ve got a contradic-
tion. And in math, that’s deadly. A formal system that allows
us to derive a contradiction is completely useless. One error
like that, allowing us to derive just one contradiction, means
that every result we ever discovered or proved in the system
isworthless! If there’s a single contradiction possible anywhere
in the system, then every statement—whether genuinely true
or false—is provable in that system!

Unfortunately, this is pretty deeply embedded in the struc-
ture of naive set theory. Naive set theory says that any
predicate defines a set, but we can define predicates for
which there is no validmodel, for which there is no possible
set that consistently matches the predicate. By allowing this
kind of inconsistency, naive set theory itself is inconsistent,
and so naive set theory needs to be discarded.Whatwe need
to do to save set theory at all is build it a better basis. That
basis should allow us to do all of the simple stuff that we do
in naive set theory, but do it without permitting contradic-
tions. In the next section, we’ll look at one version of that,
called Zermelo-Frankel set theory, that defines set theory
using a set of strong axioms and manages to avoid these
problems while preserving what makes set theory valuable
and beautiful.
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