Extracted from:

Design It!

From Programmer to Software Architect

This PDF file contains pages extracted from Design It!, published by the Pragmatic
Bookshelf. For more information or to purchase a paperback or PDF copy, please
visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com

Th
Pra ematic

ogrammers

Design It!

From Programmer
to Software Architect

Michael Keeling

edited by Susannah Pfalzer



Design It!

From Programmer to Software Architect

Michael Keeling

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow

Development Editor: Susannah Davidson Pfalzer
Indexing: Potomac Indexing, LLC

Copy Editor: Liz Welch

Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-209-1

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2017


https://pragprog.com
support@pragprog.com
rights@pragprog.com

Become an Architect for Your Team

On some teams, architect is an official team role. On other teams, there is no
explicit role and teammates share the architect’s responsibilities. Some teams
say they don’t have an architect, but if you look closely, someone is fulfilling
the architect’s duties without realizing it.

Architects are leaders, but being a software architect also implies a person
who thinks about software design in a certain way. No matter what the title
on your business card reads (mine still reads software engineer, my choice),
you can be a software architect. Every team has at least one architect. The
best teams have several.

If your team doesn’t have an architect, congratulations, you've got the job!
You don’t need permission to inject architectural thinking into your team’s
design discussions. Start asking questions about quality attributes. Point out
when the team makes trade-offs. Volunteer to write up design decisions and
begin accepting more architecture design responsibilities.

If your team already has an architect, then ask that person how you can help.
When possible, work closely with your architect and take advantage of every
learning opportunity you can. Developing a software system is a big job. The
more people who pay attention to the details, the greater your chance of
success. Every team should be so lucky as to have many knowledgeable
software architects!

Make the Move from Programmer to Software Architect

An average software architect has developed three to five software systems
with increased technical responsibility on each software system. Depending
on the software you build, as your architecture responsibilities grow you may
find you have less time for programming. This is normal, though software
architects should never stop programming altogether.

To measure your growth from programmer to software architect, create a
project portfolio. For every software system you build, no matter your role,
briefly describe the software system and what you learned during your time
developing it. This kind of reflective practice is essential for all technical
leaders but especially software architects.

Here are some questions you should answer about each project in your
portfolio:

e Who were the stakeholders and what were the primary business goals?
e What did the high-level solution look like?

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/mkdsa
http://forums.pragprog.com/forums/mkdsa

°6

e What technologies were involved?
e What were the biggest risks and how did you overcome them?
e If you could do it all over again, how would you do it differently?

Whether your goal is promotion or simply professional growth, be patient.
You might have the chance to design a software system of meaningful com-
plexity only every three to five years. If you are lucky, you will see between 8
and 15 software systems throughout your entire career. Be prepared to take
advantage of architecting opportunities as they arise. Work with your team-
mates to give everyone a chance to grow their skills. I promise there is more
than enough interesting architecture work for everyone!

Always remember, software architect is a way of thinking, not just a role on
the team. When you’re wearing your programmer hat, you'll make dozens of
design decisions daily. Some of these decisions have architectural significance.
Anyone who makes a decision that influences the structures of the software
system becomes the architect pro tempore. It’'s up to you to make good deci-
sions and uphold architectural integrity no matter what the title on your
business card reads.

Build Amazing Software

There are lots of things that have to go right when building a software system.
Architecture connects them all together and provides a foundation for success.
Here are six ways software architecture helps you in your quest to build
spectacular software that your stakeholders will love:

1. Software architecture turns a big problem into smaller, more manageable
problems.
Modern software systems are large and complex, and they have many
moving pieces. The architecture precisely explains how to partition the
system into smaller, bite-sized chunks while also ensuring the system as
a whole is greater than the sum of its parts.

2. Software architecture shows people how to work together.
Software development is as much about human communication as it is
technology. Software architecture describes how the whole system comes
together, including the people who build it. When you know the architecture,
then you can see how people can collaborate to develop software. The larger
the software system, the more important this becomes.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/mkdsa
http://forums.pragprog.com/forums/mkdsa

Build Amazing Software ¢ 7

3. Software architecture provides a vocabulary for talking about complex
ideas.
If I don’t understand what you're talking about, then we won’t be able to
collaborate. Instead of spending all our time inventing vocabulary and
concepts, we can use the essential concepts and core vocabulary of
architecture as the starting basis for collaboration. Now we can spend
our time solving our users’ real problems.

4. Software architecture looks beyond features and functionality.
Features and functionality are important, but they are not the only thing
that determines whether or not software is awesome. When designing
architecture, you’ll consider not only the features but also costs, con-
straints, schedules, risk, the ability of the team to deliver, and most
importantly quality attributes—things like scalability, availability, perfor-
mance, and maintainability.

5. Software architecture helps you avoid costly mistakes.
In Who Needs an Architect? [FowO03], Martin Fowler defines software
architecture as “...the important stuff. Whatever that is.” The important
stuff is nearly always what we think will be difficult to change without
significantly increasing complexity. Grady Booch echoes Fowler’s sentiment
by defining architecture as the “...significant design decisions (where
significant is measured by the cost of change).”’ Software architects are
not omniscient, but designing an architecture will help you discover the
challenging (and interesting) parts of the problem that might cause big

trouble later.

6. Software architecture enables agility.

Your software should respond to change like water, by bending around
obstacles with ease. If software is like water, able to take any shape, then
software architecture is the container that holds it. That container can
be rigid like a box or flexible like a plastic bag. It can be thick and heavy
or lightweight. Without an architecture, software, like water, follows the
path of least resistance and sprawls uncontrollably. A software system’s
architecture provides the structure within which change is possible.

We'll expand on these ideas throughout the remainder of the book.

1. Grady Booch. Abstracting the Unknown. SATURN 2016. http://resources.sei.cmu.edu/library/

« Click HERE to purchase this book now. discuss


http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=454315
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=454315
http://pragprog.com/titles/mkdsa
http://forums.pragprog.com/forums/mkdsa

°8

Case Study: Project Lionheart

As we cover new ideas in each chapter, we’ll apply them to a case study,
Project Lionheart. The case study is based on a real system, but the names
and situations have been changed for teaching and legal purposes.

Design an Architecture to Solve This Problem

The City of Springfield is facing budget shortfalls and needs to cut costs.
Mayor Jean Claude van Damme (no relation to the action hero) has hired our
team to streamline the city’s Office of Management and Budget (OMB).

When a city employee needs to purchase something for more than a few
thousand dollars, the OMB issues a Request for Proposals (RFP) in the local
newspaper. Businesses bid on the RFPs and the OMB awards a contract based
on the competitiveness of the bid and other factors. The OMB monitors more
than 500 active contracts and RFPs for everything from toilet paper to medical
supplies to basketballs. The OMB manages all this data in spreadsheets.

Mayor van Damme hopes modernizing the OMB will improve a few strategic
areas.

e Over half of all RFPs have a single bid. The city is potentially overpaying
for lower-quality services.

e Finalizing a contract takes months. Many businesses get lost in the
multistep process.

¢ Publishing a new RFP takes up to 6 weeks. This process must be faster.

Throughout Part II, we’ll flesh out this case study and work together to design
a plausible architecture to solve some of these problems.

Next Up

Software architects are responsible for quite a lot. Designing interesting,
complex software systems and working with different people feels good and
is well worth the effort. Becoming a software architect is not an overnight
journey. If you focus on the architect’s core responsibilities and do your best
to apply the architectural fundamentals, mainly selecting structures to pro-
mote desired quality attributes, then you’ll do great.

In this chapter, you learned what architecture is and what architects do. In
the next chapter, you'll learn how to use design thinking to figure out what
should go into the architecture.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/mkdsa
http://forums.pragprog.com/forums/mkdsa



