
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Preface
Clojure was designed to be a general-purpose functional langauge with a
simple programming model for information systems (far simpler than the
object-oriented models that dominate the industry). Many people have com-
mented that aspects of Clojure like immutable collections, functional program-
ming, state management, concurrency, and open polymorphism seem to fit
together and support each other at a suprisingly deep level. Indeed, this is a
consequence of the intense design effort that went into Clojure’s initial creation
and the attention the core team pays to design with every new feature.

However, some aspects of Clojure may defy expectations when coming from
other languages, or be unclear if the underlying design is not understood.
The authors have spent many years assisting new developers learning Clojure
and the same questions arise repeatedly. This book is designed to explore
these common questions. Any new or intermediate Clojure developer will find
familiar questions in these pages and it is likely you will find some you have
encountered in the past.

Additionally, Clojure is by design a hosted language, running on top of some
other runtime, like the JVM, Javascript, the Microsoft CLR, or even Bash.
Being hosted gives Clojure a huge advantage in library availability and inte-
gration with existing systems, but also opens a plethora of situations where
Clojure and host semantics may differ, also defying user expectations.

About the Book
Each teaser starts with a simple program and asks you to guess the result.
The teasers are designed to either produce a true or false or may in some cases
throw an exception.

After you’ve turned the page, you’ll find out what actually happens and get
an explanation of why the program returns the answer it does, often with
some discussion of related topics. These teasers are not “gotchas” and do not
exploit bugs in the language. Rather, these teasers reveal places where your

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mmclobrain
http://forums.pragprog.com/forums/mmclobrain

prior experience or expectations have lead you to a conclusion different than
Clojure’s design. But fear not, as you read this book the underlying intent of
the language will be revealed.

You will be able to use this knowledge in the future to better predict and
leverage how your own Clojure programs work.

About the Authors
Alex Miller has been a member of the Clojure core team since 2013 and is
the co-author of Clojure Applied [VM15] and Programming Clojure, Third Edition
[HB18]. Alex is the creator or organizer of the Strange Loop, Lambda Jam,
Clojure/west, and Clojure/conj conferences.

L. Jordan Miller is a Staff Software Engineer at Nubank, Datomic Developer
Advocate, and producer/host of the Lost In Lambduhhs podcast. Passionate
about people, programming, and pedagogy, she’s a conference speaker, host,
organizer, and reviewer for events such as Heart of Clojure, Strange Loop,
Re:clojure, and Clojure Conj.

About the Code
Each teaser starts with a small code snippet that can be run at the Clojure
REPL (Read-Eval-Print Loop). The easiest way to run the Clojure REPL is to
install the Clojure CLI (https://clojure.org/guides/install_clojure), then execute the
command clj from your shell. If you’re using a development environment, just
open any REPL to type the teaser code.

In code examples, the REPL prompt is not printed and instead the expression
is printed at the beginning of the line. Return values follow in a line starting
;;=>. If output is printed (not returned), the line will start ;;.

(+ 1 1)
;;=> 2

(println "Hello!")
;; Hello!
;;=> nil

In some cases the output has been slightly modified to improve clarity, for
example by omitting return values that aren’t important or simplifying
exception messages.

Each teaser’s source code is also included as a standalone source file in the
sample code for this book, available on the Pragmatic Bookshelf website

Preface • iv

• Click HERE to purchase this book now. discuss

https://clojure.org/guides/install_clojure
http://pragprog.com/titles/mmclobrain
http://forums.pragprog.com/forums/mmclobrain

(https://pragprog.com/titles/mmclobrain). There you can download teaser code, partic-
ipate in discussions, and report issues if needed.

About You
This book assumes some basic familiarity with Clojure and its features. If
you are completely new to Clojure, we suggest that you pause each time you
encounter something new and read about it in your favorite Clojure introduc-
tory text or online resource, like Programming Clojure, Third Edition [HB18]
or Getting Clojure [Ols18]. Because the topics are presented here example-
first, you may find that they form a complementary path into learning.

You may want to read this while sitting by a REPL, trying each teaser before
you turn the page. Or you may find it sufficient to just predict the answer in
your brain REPL. Or you may just want to turn the page and read the answer,
gauging your level of surprise. All of these are okay!

Have fun!

• Click HERE to purchase this book now. discuss

About You • v

https://pragprog.com/titles/mmclobrain
http://pragprog.com/titles/mmclobrain
http://forums.pragprog.com/forums/mmclobrain

