
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Puzzle 16

Quoth the Raven

book/src/quoth.clj
(def raven "nevermore")

(= raven "nevermore")
(= 'raven (symbol "raven"))
(= `raven (symbol "user/raven"))

Guess the Output

Try to guess what the output is before moving to the next page.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/mmclobrain/code/book%2Fsrc%2Fquoth.clj
http://pragprog.com/titles/mmclobrain
http://forums.pragprog.com/forums/mmclobrain

The program will display the following output for all expressions:

(def raven "nevermore")

(= raven "nevermore")
;;=> true

(= 'raven (symbol "raven"))
;;=> true

(= `raven (symbol "user/raven"))
;;=> true

Discussion
All three forms return true, demonstrating several versions of symbol evaluation
and quoting.

In Clojure, all code is made up of expressions, which may be arbitrarily
nested. The evaluation phase processes each top-level expression to determine
a result, which typically involves recursively evaluating nested expressions.
However, sometimes we want to read a form but NOT evaluate it, thus leaving
it as data. That brings us to quoting.

The first form is just the symbol raven:

(= raven "nevermore")
;;=> true

Symbols are names that resolve to something. Here, the raven symbol is a
name referring to the var that was created with def in the first line. The var
is resolved in the namespace and evaluated to its current value, the string
"nevermore".

The second form quotes the symbol with a single quote using a single quote
character:

(= 'raven (symbol "raven"))
;;=> true

The ' is expanded in the reader to (quote raven). quote is a special form imple-
mented by the compiler—it will cause its value to be read as data by the
reader but NOT evaluated.

For example, the following code creates a literal list with symbols without
looking up the symbols or invoking the first element of the list as an operation.

Puzzle 16. Quoth the Raven • 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mmclobrain
http://forums.pragprog.com/forums/mmclobrain

(a b c) ;; tries to evaluate by invoking a
;;=> Syntax error compiling at (REPL:1:1).
;;=> Unable to resolve symbol: a in this context

'(a b c) ;; suppress evaluation
;;=> (a b c)

The third form uses a backtick character (called syntax quote in Clojure):

(= `raven (symbol "user/raven"))
;;=> true

Like a quote, a syntax quote avoids evaluation, but it has some additional
features that make it ideal for use in macros. Macros are a special kind of
function—they take code as input and return replacement code as output.
In a sense, macros let users provide code that runs at compilation time (per-
haps Poe would call it a “Dream Within a Dream”).

The teaser was run in the user namespace. Because the `raven symbol is
unqualified and does not refer to a local binding, it is resolved here in the
“current” namespace. The syntax quoted symbol is thus resolved to user/raven.

Because macros run in the context where they are invoked, they need to
return code with names that have meaning in that context, not within the
namespace of the macro itself. Thus, macro writers can use a syntax quote
with unqualified symbols to resolve to qualified symbols in the context of the
expanded code.

In this teaser, we’ve seen how symbols, quoted symbols, and syntax quoted
symbols vary in their evaluation. While you won’t need to quote very often in
your code, it is an essential tool when writing macros and some kinds of meta-
programming.

Further Reading
Clojure Reference - Evaluation

https://clojure.org/reference/evaluation

Clojure Reference - Special Form quote
https://clojure.org/reference/special_forms#quote

• Click HERE to purchase this book now. discuss

Quoth the Raven • 5

https://clojure.org/reference/evaluation
https://clojure.org/reference/special_forms#quote
http://pragprog.com/titles/mmclobrain
http://forums.pragprog.com/forums/mmclobrain

Part IV

Runtime and Library

Clojure provides a robust set of special forms and
functions as part of the standard library. These
teasers explore some common places where these
operations work differently than you might expect.

