
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Puzzle 7

When in Rome

book/src/when_in_rome.clj
(= (conj '(:colosseum :vatican) :pantheon :trevi-fountain)

(conj [:colosseum :vatican] :pantheon :trevi-fountain))

Guess the Output

Try to guess what the output is before moving to the next page.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/mmclobrain/code/book/src/when_in_rome.clj
http://pragprog.com/titles/mmclobrain
http://forums.pragprog.com/forums/mmclobrain

The program will display the following output:

(= (conj '(:colosseum :vatican) :pantheon :trevi-fountain)
(conj [:colosseum :vatican] :pantheon :trevi-fountain))

;;=> false

Discussion
As we plan our itinerary of sights in Rome, we decide to add the Pantheon
and the Trevi Fountain to our stops. But as we can see, it matters a lot
whether we are using lists or vectors to store those sights:

(conj '(:colosseum :vatican) :pantheon :trevi-fountain)
;;=> (:trevi-fountain :pantheon :colosseum :vatican)
(conj [:colosseum :vatican] :pantheon :trevi-fountain)
;;=> [:colosseum :vatican :pantheon :trevi-fountain]

The conj function (short for “conjoin”) is used to add one or more elements to
a collection. Each collection type inserts elements in the way that is most
efficient for the collection, not necessarily at the beginning or end. In other
words, conj does not mean “append” or “prepend”.

The most common point of confusion for new Clojure users is why lists (or
sequences) insert elements at the beginning and vectors insert elements at
the end. This all goes back to their implementation and where it is efficient
to add elements.

Clojure lists or sequences are conceptually implemented as linked lists, a
data structure that can be thought of as a chain where each link in the chain
consists of a value and a reference to the next link. To traverse the data
structure we start at the head and walk the chain through the references to
get to the end.

Inserting a new element could be done at the end but only if you start at the
head of the chain, walk through every link, and then construct a new link
with the element at the end. The time to do this is proportional to the length
of the list (1000 units of time for a list with 1000 elements). However, inserting
at the beginning is always a constant amount of time—you make a new link
that simply refers to the head of the existing chain. conjing multiple elements
will do this repeatedly, so the last thing we added (:trevi-fountain) is the first
thing in the resulting list.

Collections • 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mmclobrain
http://forums.pragprog.com/forums/mmclobrain

Vectors however are stored as a tree (technically a “hash array-mapped trie”,
a data structure invented by Phil Bagwell). We won’t go into those details
here, but the tree is arranged in the order of the vector elements. Adding a
new value can easily be done at the end by walking the right-most nodes of
the tree, and appending a new value to the final hash node leaf.

The time it takes to do the tree traversal is proportional to the height of the
tree, and the height is the log, base 32, of the number of elements in the
vector. Because this data structure uses relatively wide internal nodes, the
tree is very shallow and the height of the tree is usually only a few levels deep,
usually no more than 3. Because the height grows so slowly, we sometimes
call the traversal time “effectively constant”.

Inserting an element at the beginning of the vector could also be relatively
fast, but it would require some additional overhead due to the implementation.
More importantly, it makes more semantic sense to add elements to the end
of the indexed vector than the beginning (or all of the indices would change).
For these reasons, vectors add at the end.

Retaining Order While Transforming
Because lists and vectors have different behavior for conj, it is important to
keep track in your code which you are using at any given time. Generally,
because vectors are easier to type in (no quoting necessary) and append at
the end, data is most commonly built up using vectors, then transformed
using the sequence functions like map and filter, which return lazy sequences.

For the specific cases of map and filter, there are also mapv and filterv variants
of map and filter which return vectors:

;; with map, returns sequence
(map #(* % 3) (range 5))
;;=> (0 3 6 9 12)

;; with mapv, returns vector
(mapv #(* % 3) (range 5))
;;=> [0 3 6 9 12]

A more general solution is to use transducers and into. Most sequence functions
provide an additional arity that omits the collection and instead returns a
transducer, a function that embodies the function algorithm but decouples
from the input and output sources. Transducers can be composed using comp
into a chain of transformations applied to a source of values, like a collection.

• Click HERE to purchase this book now. discuss

When in Rome • 5

http://pragprog.com/titles/mmclobrain
http://forums.pragprog.com/forums/mmclobrain

The into function takes a target collection, an optional transducer, and a source
collection. You can use into with a map transducer to collect the results into a
vector like this:

(into [] (map #(* % 3)) (range 5))
;;=> [0 3 6 9 12]

Note that map here takes only the mapping function. into is responsible for
applying the resulting transducer function to the source and storing the result
into the output vector. This is more complicated than mapv, but also more
flexible (when composing multiple transducers), and potentially faster in
better avoiding intermediate collections.

Sets
It’s also interesting to consider adding elements to a set:

(conj #{:colosseum :vatican} :pantheon :trevi-fountain)
;;=> #{:vatican :trevi-fountain :colosseum :pantheon}

The important thing to remember about sets is that they guarantee no partic-
ular order. The actual order they are printed in ultimately derives from the
hash codes of the elements, which have no obvious relationship to the values
(and that order may even differ between Clojure versions). The other interesting
aspect of sets is that you cannot add the same element more than once.
Mathematically, a set is a set of values (duplicates are not possible):

(conj #{1 2 3} 4 4 4)
;;=> #{1 4 3 2}

You can try to add the same value multiple times, but it is only added for the
first one and makes no modification after that.

Further Reading
ClojureDocs - clojure.core/conj

https://clojuredocs.org/clojure.core/conj

Clojure Reference - Data Structures
https://clojure.org/reference/data_structures

“Ideal Hash Trees” by Phil Bagwell
https://infoscience.epfl.ch/record/64398/files/idealhashtrees.pdf

Clojure Reference - Transducers
https://clojure.org/reference/transducers

Collections • 6

• Click HERE to purchase this book now. discuss

https://clojuredocs.org/clojure.core/conj
https://clojure.org/reference/data_structures
https://infoscience.epfl.ch/record/64398/files/idealhashtrees.pdf
https://clojure.org/reference/transducers
http://pragprog.com/titles/mmclobrain
http://forums.pragprog.com/forums/mmclobrain

