
Extracted from:

Release It! Second Edition
Design and Deploy Production-Ready Software

This PDF file contains pages extracted from Release It! Second Edition, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Release It! Second Edition
Design and Deploy Production-Ready Software

Michael T. Nygard

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC
Copy Editor: Molly McBeath
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-239-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 4

Stability Antipatterns
Delegates to the first NATO Software Engineering Conference coined the term
software crisis in 1968. They meant that demand for new software outstripped
the capacity of all existing programmers worldwide. If that truly was the start of
the software crisis, then it has never ended! (Interestingly, that conference also
appears to be the origin of the term software engineering. Some reports say it
was named that way so certain attendees would be able to get their travel
expenses approved. I guess that problem hasn’t changed much either.) Our
machines have gotten better by orders of magnitude. So have the languages and
libraries. The enormous leverage of open source multiplies our abilities. And of
course, something like a million times more programmers are in the world now
than there were in 1968. So overall, our ability to create software has had its
own kind of Moore’s law exponential curve at work. So why are we still in a
software crisis? Because we’ve steadily taken on bigger and bigger challenges.

In those hazy days of the client/server system, we used to think of a hundred
active users as a large system; now we think about millions. (And that’s up from
the first edition of this book, when ten thousand active users was a lot.) We’ve
just seen our first billion-user site. In 2016, Facebook announced that it has
1.13 billion daily active users.1 An “application” now consists of dozens or hun-
dreds of services, each running continuously while being redeployed continu-
ously. Five nines of reliability for the overall application is nowhere near enough.
It would result in thousands of disappointed users every day. Six Sigma quality
on Facebook would create 768,000 angry users per day. (200 requests per page,
1.13 billion daily active users, 3.4 defects per million opportunities.)

The breadth of our applications’ reach has exploded, too. Everything within
the enterprise is interconnected, and then again as we integrate across

1. http://venturebeat.com/2016/07/27/facebook-passes-1-billion-mobile-daily-active-users

• Click HERE to purchase this book now. discuss

http://venturebeat.com/2016/07/27/facebook-passes-1-billion-mobile-daily-active-users
http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2

enterprises. Even the boundaries of our applications have become fuzzy as
more features are delegated to SaaS services.

Of course, this also means bigger challenges. As we integrate the world,
tightly coupled systems are the rule rather than the exception. Big systems
serve more users by commanding more resources; but in many failure modes
big systems fail faster than small systems. The size and the complexity of
these systems push us to what author James R. Chiles calls in Inviting
Disaster [Chi01] the “technology frontier,” where the twin specters of high
interactive complexity and tight coupling conspire to turn rapidly moving
cracks into full-blown failures.

High interactive complexity arises when systems have enough moving parts
and hidden, internal dependencies that most operators’ mental models are
either incomplete or just plain wrong. In a system exhibiting high interactive
complexity, the operator’s instinctive actions will have results ranging from
ineffective to actively harmful. With the best of intentions, the operator can
take an action based on his or her own mental model of how the system
functions that triggers a completely unexpected linkage. Such linkages con-
tribute to “problem inflation,” turning a minor fault into a major failure. For
example, hidden linkages in cooling monitoring and control systems are
partly to blame for the Three Mile Island reactor incident, as Chiles outlines
in his book. These hidden linkages often appear obvious during the post-
mortem analysis, but are in fact devilishly difficult to anticipate.

Tight coupling allows cracks in one part of the system to propagate themselves
—or multiply themselves—across layer or system boundaries. A failure in one
component causes load to be redistributed to its peers and introduces delays
and stress to its callers. This increased stress makes it extremely likely that
another component in the system will fail. That in turn makes the next failure
more likely, eventually resulting in total collapse. In your systems, tight
coupling can appear within application code, in calls between systems, or
any place a resource has multiple consumers.

In the next chapter, we’ll look at some patterns that can alleviate or prevent
the antipatterns from harming your system. Before we can get to that good
news, though, we need to understand what we’re up against.

In this chapter, we’ll look at antipatterns that can wreck your system. These
are common forces that have contributed to more than one system failure.
Each of these antipatterns will create, accelerate, or multiply cracks in the
system. These bad behaviors are to be avoided.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2

Simply avoiding these antipatterns isn’t sufficient, though. Everything breaks.
Faults are unavoidable. Don’t pretend you can eliminate every possible source
of them, because either nature or nurture will create bigger disasters to wreck
your systems. Assume the worst. Faults will happen. We need to examine
what happens after the fault creeps in.

Integration Points
I haven’t seen a straight-up “website” project since about 1996. Everything
is an integration project with some combination of HTML veneer, front-end
app, API, mobile app, or all of the above. The context diagram for these projects
will fall into one of two patterns: the butterfly or the spider. A butterfly has
a central system with a lot of feeds and connections fanning into it on one
side and a large fan out on the other side, as shown in the figure that follows.

Downstream
System
Boundary

Provider

Provider

Provider

User
Role

User
Role

Caller

Caller

Caller Downstream

Some people would call this a monolith, but that has negative connotations.
It might be a nicely factored system that just has a lot of responsibility.

The other style is the spiderweb, with many boxes and dependencies. If you’ve
been diligent (and maybe a bit lucky), the boxes fall into ranks with calls
through tiers, as shown in the first figure on page 8. If not, then the web
will be chaotic like that of the black widow, shown in the second figure on
page 8. The feature common to all of these is that the connections outnumber
the services. A butterfly style has 2N connections, a spiderweb might have
up to 2N, and yours falls somewhere in between.

• Click HERE to purchase this book now. discuss

Integration Points • 7

http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2

Svc

Svc

Svc

User
Role

User
Role

Caller

Caller

Caller

Svc

Svc

Svc

Svc

Svc

Svc

Svc

Svc

Svc

Upstream Downstream

User
Role

User
Role

Svc

Svc

Svc

Svc

Svc Svc

Svc

Svc

Svc

Svc

Svc

All these connections are integration points, and every single one of them is
out to destroy your system. In fact, the more we move toward a large number
of smaller services, the more we integrate with SaaS providers, and the more
we go API first, the worse this is going to get.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2

You Have How Many Feeds?

I was helping launch a replatform/rearchitecture project for a huge retailer. It came
time to identify all the production firewall rules so we could open holes in the firewall
to allow authorized connections to the production system. We had already gone
through the usual suspects: the web servers’ connections to the application server,
the application server to the database server, the cluster manager to the cluster
nodes, and so on.

When it came time to add rules for the feeds in and out of the production environment,
we were pointed toward the project manager for enterprise integration. That’s right,
the site rebuild project had its own project manager dedicated just to integration.
That was our second clue that this was not going to be a simple task. (The first clue
was that nobody else could tell us what all the feeds were.) The project manager
understood exactly what we needed. He pulled up his database of integrations and
ran a custom report to give us the connection specifics.

Feeds came in from inventory, pricing, content management, CRM, ERP, MRP, SAP,
WAP, BAP, BPO, R2D2, and C3P0. Data extracts flew off toward CRM, fulfillment,
booking, authorization, fraud checking, address normalization, scheduling, shipping,
and so on.

On the one hand, I was impressed that the project manager had a fully populated
database to keep track of the various feeds (synchronous/asynchronous, batch or
trickle feed, source system, frequency, volume, cross-reference numbers, business
stakeholder, and so on). On the other hand, I was dismayed that he needed a database
to keep track of it!

It probably comes as no surprise, then, that the site was plagued with stability
problems when it launched. It was like having a newborn baby in the house; I was
awakened every night at 3 a.m. for the latest crash or crisis. We kept documenting
the spots where the app crashed and feeding them back to the maintenance team for
correction. I never kept a tally, but I’m sure that every single synchronous integration
point caused at least one outage.

Integration points are the number-one killer of systems. Every single one of
those feeds presents a stability risk. Every socket, process, pipe, or remote
procedure call can and will hang. Even database calls can hang, in ways obvious
and subtle. Every feed into the system can hang it, crash it, or generate other
impulses at the worst possible time. We’ll look at some of the specific ways
these integration points can go bad and what you can do about them.

Socket-Based Protocols
Many higher-level integration protocols run over sockets. In fact, pretty much
everything except named pipes and shared-memory IPC is socket-based. The

• Click HERE to purchase this book now. discuss

Integration Points • 9

http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2

higher protocols introduce their own failure modes, but they’re all susceptible
to failures at the socket layer.

The simplest failure mode occurs when the remote system refuses connections.
The calling system must deal with connection failures. Usually, this isn’t
much of a problem, since everything from C to Java to Elm has clear ways to
indicate a connection failure—either an exception in languages that have
them or a magic return value in ones that don’t. Because the API makes it
clear that connections don’t always work, programmers deal with that case.

One wrinkle to watch out for, though, is that it can take a long time to discover
that you can’t connect. Hang on for a quick dip into the details of TCP/IP
networking.

Every architecture diagram ever drawn has boxes and arrows, similar to the
ones in the following figure. (A new architect will focus on the boxes; an
experienced one is more interested in the arrows.)

Remote ServerLocal Server

Caller Provider

Like a lot of other things we work with, this arrow is an abstraction for a network
connection. Really, though, that means it’s an abstraction for an abstraction.
A network “connection” is a logical construct—an abstraction—in its own right.
All you will ever see on the network itself are packets. (Of course, a “packet” is
an abstraction, too. On the wire, it’s just electrons or photons. Between electrons
and a TCP connection are many layers of abstraction. Fortunately, we get to
choose whichever level of abstraction is useful at any given point in time.) These
packets are the Internet Protocol (IP) part of TCP/IP. Transmission Control
Protocol (TCP) is an agreement about how to make something that looks like a
continuous connection out of discrete packets. The figure on page 11 shows the
“three-way handshake” that TCP defines to open a connection.

The connection starts when the caller (the client in this scenario, even though
it is itself a server for other applications) sends a SYN packet to a port on the
remote server. If nobody is listening to that port, the remote server immedi-
ately sends back a TCP “reset” packet to indicate that nobody’s home. The
calling application then gets an exception or a bad return value. All this

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2

Remote ServerLocal Server

Providing
Service

2. SYN/ACKCalling
Service

1. SYN

3. ACK

time

happens very quickly, in less than ten milliseconds if both machines are
plugged into the same switch.

If an application is listening to the destination port, then the remote server
sends back a SYN/ACK packet indicating its willingness to accept the connec-
tion. The caller gets the SYN/ACK and sends back its own ACK. These three
packets have now established the “connection,” and the applications can send
data back and forth. (For what it’s worth, TCP also defines the “simultaneous
open” handshake, in which both machines send SYN packets to each other
before a SYN/ACK. This is relatively rare in systems that are based on
client/server interactions.)

Suppose, though, that the remote application is listening to the port but is
absolutely hammered with connection requests, until it can no longer service
the incoming connections. The port itself has a “listen queue” that defines
how many pending connections (SYN sent, but no SYN/ACK replied) are
allowed by the network stack. Once that listen queue is full, further connection
attempts are refused quickly. The listen queue is the worst place to be. While
the socket is in that partially formed state, whichever thread called open() is
blocked inside the OS kernel until the remote application finally gets around
to accepting the connection or until the connection attempt times out. Con-
nection timeouts vary from one operating system to another, but they’re
usually measured in minutes! The calling application’s thread could be blocked
waiting for the remote server to respond for ten minutes!

Nearly the same thing happens when the caller can connect and send its
request but the server takes a long time to read the request and send a
response. The read() call will just block until the server gets around to
responding. Often, the default is to block forever. You have to set the socket
timeout if you want to break out of the blocking call. In that case, be prepared
for an exception when the timeout occurs.

Network failures can hit you in two ways: fast or slow. Fast network failures
cause immediate exceptions in the calling code. “Connection refused” is a very

• Click HERE to purchase this book now. discuss

Integration Points • 11

http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2

fast failure; it takes a few milliseconds to come back to the caller. Slow failures,
such as a dropped ACK, let threads block for minutes before throwing exceptions.
The blocked thread can’t process other transactions, so overall capacity is
reduced. If all threads end up getting blocked, then for all practical purposes,
the server is down. Clearly, a slow response is a lot worse than no response.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2

