
Extracted from:

Release It! Second Edition
Design and Deploy Production-Ready Software

This PDF file contains pages extracted from Release It! Second Edition, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Release It! Second Edition
Design and Deploy Production-Ready Software

Michael T. Nygard

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC
Copy Editor: Molly McBeath
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-239-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 1

Living in Production
You’ve worked hard on your project. It looks like all the features are actu-
ally complete, and most even have tests. You can breathe a sigh of relief.
You’re done.

Or are you?

Does “feature complete” mean “production ready”? Is your system really ready
to be deployed? Can it be run by operations and face the hordes of real-world
users without you? Are you starting to get that sinking feeling that you’ll be
faced with late-night emergency phone calls and alerts? It turns out there’s
a lot more to development than just adding all the features.

Software design as taught today is terribly incomplete. It only talks about
what systems should do. It doesn’t address the converse—what systems
should not do. They should not crash, hang, lose data, violate privacy, lose
money, destroy your company, or kill your customers.

Too often, project teams aim to pass the quality assurance (QA) department’s
tests instead of aiming for life in production. That is, the bulk of your work
probably focuses on passing testing. But testing—even agile, pragmatic,
automated testing—is not enough to prove that software is ready for the real
world. The stresses and strains of the real world, with crazy real users, globe-
spanning traffic, and virus-writing mobs from countries you’ve never even
heard of go well beyond what you could ever hope to test for.

But first, you will need to accept the fact that despite your best laid plans,
bad things will still happen. It’s always good to prevent them when possible,
of course. But it can be downright fatal to assume that you’ve predicted and
eliminated all possible bad events. Instead, you want to take action and pre-
vent the ones you can but make sure that your system as a whole can
recover from whatever unanticipated, severe traumas might befall it.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2

Aiming for the Right Target
Most software is designed for the development lab or the testers in the QA
department. It is designed and built to pass tests such as, “The customer’s
first and last names are required, but the middle initial is optional.” It aims
to survive the artificial realm of QA, not the real world of production.

Software design today resembles automobile design in the early ’90s—discon-
nected from the real world. Cars designed solely in the cool comfort of the lab
looked great in models and CAD systems. Perfectly curved cars gleamed in
front of giant fans, purring in laminar flow. The designers inhabiting these
serene spaces produced designs that were elegant, sophisticated, clever,
fragile, unsatisfying, and ultimately short-lived. Most software architecture
and design happens in equally clean, distant environs.

Do you want a car that looks beautiful but spends more time in the shop
than on the road? Of course not! You want to own a car designed for the real
world. You want a car designed by somebody who knows that oil changes are
always 3,000 miles late, that the tires must work just as well on the last
sixteenth of an inch of tread as on the first, and that you will certainly, at
some point, stomp on the brakes while holding an Egg McMuffin in one hand
and a phone in the other.

When our system passes QA, can we say with confidence that it’s ready for
production? Simply passing QA tells us little about the system’s suitability
for the next three to ten years of life. It could be the Toyota Camry of software,
racking up thousands of hours of continuous uptime. Or it could be the Chevy
Vega (a car whose front end broke off on the company’s own test track) or the
Ford Pinto (a car prone to blowing up when hit in just the right way). It’s
impossible to tell from a few days or even a few weeks of testing what the next
several years will bring.

Product designers in manufacturing have long pursued “design for manufac-
turability”—the engineering approach of designing products such that they
can be manufactured at low cost and high quality. Prior to this era, product
designers and fabricators lived in different worlds. Designs thrown over the
wall to production included screws that could not be reached, parts that were
easily confused, and custom parts where off-the-shelf components would
serve. Inevitably, low quality and high manufacturing cost followed.

We’re in a similar state today. We end up falling behind on the new system
because we’re constantly taking support calls from the last half-baked project
we shoved out the door. Our analog of “design for manufacturability” is “design

• 2

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2

for production.” We don’t hand designs to fabricators, but we do hand finished
software to IT operations. We need to design individual software systems, and
the whole ecosystem of interdependent systems, to operate at low cost and
high quality.

The Scope of the Challenge
In the easy, laid-back days of client/server systems, a system’s user base
would be measured in the tens or hundreds, with a few dozen concurrent
users at most. Today we routinely see active user counts larger than the
population of entire continents. And I’m not just talking about Antarctica and
Australia here! We’ve seen our first billion-user social network, and it won’t
be the last.

Uptime demands have increased too. Whereas the famous “five nines” (99.999
percent) uptime was once the province of the mainframe and its caretakers,
even garden-variety commerce sites are now expected to be available 24 by
7 by 365. (That phrase has always bothered me. As an engineer, I expect it
to either be “24 by 365” or be “24 by 7 by 52.”) Clearly, we’ve made tremendous
strides even to consider the scale of software built today; but with the
increased reach and scale of our systems come new ways to break, more
hostile environments, and less tolerance for defects.

The increasing scope of this challenge—to build software fast that’s cheap to
build, good for users, and cheap to operate—demands continually improving
architecture and design techniques. Designs appropriate for small WordPress
websites fail outrageously when applied to large scale, transactional, distribut-
ed systems, and we’ll look at some of those outrageous failures.

A Million Dollars Here, a Million Dollars There
A lot is on the line here: your project’s success, your stock options or profit
sharing, your company’s survival, and even your job. Systems built for QA
often require so much ongoing expense, in the form of operations cost,
downtime, and software maintenance, that they never reach profitability, let
alone net positive cash for the business (reached only after the profits gener-
ated by the system pay back the costs incurred in building it.) These systems
exhibit low availability, direct losses in missed revenue, and indirect losses
through damage to the brand.

During the hectic rush of a development project, you can easily make decisions
that optimize development cost at the expense of operational cost. This makes
sense only in the context of the team aiming for a fixed budget and delivery

• Click HERE to purchase this book now. discuss

The Scope of the Challenge • 3

http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2

date. In the context of the organization paying for the software, it’s a bad
choice. Systems spend much more of their life in operation than in develop-
ment—at least, the ones that don’t get canceled or scrapped do. Avoiding a
one-time developmental cost and instead incurring a recurring operational
cost makes no sense. In fact, the opposite decision makes much more financial
sense. Imagine that your system requires five minutes of downtime on every
release. You expect your system to have a five-year life span with monthly
releases. (Most companies would like to do more releases per year, but I’m
being very conservative.) You can compute the expected cost of downtime, dis-
counted by the time-value of money. It’s probably on the order of $1,000,000
(300 minutes of downtime at a very modest cost of $3,000 per minute).

Now suppose you could invest $50,000 to create a build pipeline and
deployment process that avoids downtime during releases. That will, at a
minimum, avoid the million-dollar loss. It’s very likely that it will also allow
you to increase deployment frequency and capture market share. But let’s
stick with the direct gain for now. Most CFOs would not mind authorizing an
expenditure that returns 2,000 percent ROI!

Design and architecture decisions are also financial decisions. These choices
must be made with an eye toward their implementation cost as well as their
downstream costs. The fusion of technical and financial viewpoints is one of
the most important recurring themes in this book.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2

