
Extracted from:

Mockito Made Clear
Java Unit Testing with Mocks, Stubs, and Spies

This PDF file contains pages extracted from Mockito Made Clear, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Mockito Made Clear
Java Unit Testing with Mocks, Stubs, and Spies

Ken Kousen

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Margaret Eldridge
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-967-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To Ginger and Xander, the people that matter
most to me in the world.

Using Mocks and Stubs in the Astro Project
In Counting Astronauts by Spaceship, on page ?, we introduced a project
that processed the number of astronauts in space and returned how many
were aboard each spacecraft. The examples there showed an integration test
for the AstroService class and how to create a unit test using our own FakeGateway.
Now we can use Mockito instead to mock the Gateway<T> interface.

As a reminder, AstroService retrieves the data from a Gateway<T>, reproduced
here:

Gateway.java
public interface Gateway<T> {

T getResponse();
}

The class that implements this interface is called AstroGateway, and it returns
an AstroResponse that could possibly be null. If we’re going to isolate the
AstroService, we need to ask Mockito to return either that AstroResponse or throw
a RuntimeException if it’s null.

Let’s use JUnit 5 along with the Mockito annotations. The test class for the
AstroService now starts with this:

AstroServiceTest.java
@ExtendWith(MockitoExtension.class)
class AstroServiceTest {

@Mock
private Gateway<AstroResponse> gateway;

@InjectMocks
private AstroService service;

We’ll rely on Mockito to create the mock of the gateway and then inject it into
the service because we’ve provided a constructor to the AstroService class that
takes a Gateway as an argument.

One test then looks like this:

AstroServiceTest.java
@Test
void testAstroData_usingInjectedMockGateway() {

// Mock Gateway created and injected into AstroService using
// @Mock and @InjectMock annotations
//
// Set the expectations on the mock
when(gateway.getResponse())

.thenReturn(mockAstroResponse);

// Call the method under test

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/mockito/code/Gateway.java
http://media.pragprog.com/titles/mockito/code/AstroServiceTest.java
http://media.pragprog.com/titles/mockito/code/AstroServiceTest.java
http://pragprog.com/titles/mockito
http://forums.pragprog.com/forums/mockito

Map<String, Long> astroData = service.getAstroData();

// Check the results from the method under test
assertThat(astroData)

.containsEntry("Babylon 5", 2L)

.containsEntry("Nostromo", 1L)

.containsEntry("USS Cerritos", 4L);
astroData.forEach((craft, number) -> {

System.out.println(number + " astronauts aboard " + craft);
assertAll(

() -> assertThat(number).isPositive(),
() -> assertThat(craft).isNotBlank()

);
});

// Verify the stubbed method was called
verify(gateway).getResponse();

}

The annotations take care of two of our steps: creating the mock and injecting
into the service. We still need to set the expectations, which we can do with
the when/thenReturn pair. After calling the method under test getAstroData in
AstroService, we can then verify that the results are correct. At the end, we can
optionally check that the service did indeed invoke the getResponse method on
the gateway exactly once.

Testing for a failure is similar and uses the thenThrow method:

AstroServiceTest.java
// Check network failure
@Test
void testAstroData_usingFailedGateway() {

when(gateway.getResponse()).thenThrow(
new RuntimeException(new IOException("Network problems")));

assertThatExceptionOfType(RuntimeException.class)
.isThrownBy(() -> service.getAstroData())
.withCauseInstanceOf(IOException.class)
.withMessageContaining("Network problems");

}

Since the getResponse method on the gateway returns a Failure that wraps the
exception, we don’t have to use the doThrow/when construct, which is required
when the method we’re mocking returns void.

Another advantage of using Mockito is you can test for the case of network
failure without disabling the network. I bet the astronauts would be happy
about that.

Congratulations. You’ve successfully used Mockito to mock the Gateway, and
that concludes round one of the Mockito API game.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/mockito/code/AstroServiceTest.java
http://pragprog.com/titles/mockito
http://forums.pragprog.com/forums/mockito

Wrapping Up
You can either create your mocks manually and insert them into your class
under test or you can use Mockito’s annotation support to inject them auto-
matically. Mockito doesn’t provide a full injection framework, like Spring or
Guice, but it does make a good faith effort to plug in your mocks via either
constructor injection, setter injection, or even field injection.

You now have the mechanisms for telling your mocks (or stubs, in this case)
what to return when methods are called. Chained methods made the process
much simpler, and you can use multiple arguments to respond to each
invocation with different results. You also now know about the special handling
required to mock methods that return void.

In the next chapter, we’ll talk about generalizing the arguments to mocked
methods so you don’t have to give explicit values every time. Mockito has a
class that contains factory methods for that purpose—we’ll also use Java
lambdas to implement custom argument matchers.

• Click HERE to purchase this book now. discuss

Wrapping Up • 9

http://pragprog.com/titles/mockito
http://forums.pragprog.com/forums/mockito

