
Extracted from:

Mockito Made Clear
Java Unit Testing with Mocks, Stubs, and Spies

This PDF file contains pages extracted from Mockito Made Clear, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Mockito Made Clear
Java Unit Testing with Mocks, Stubs, and Spies

Ken Kousen

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Margaret Eldridge
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-967-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To Ginger and Xander, the people that matter
most to me in the world.

Counting Astronauts by Spaceship
How many astronauts are on each ship in space right now? Let’s talk through
a modern Java solution that doesn’t require many classes but uses a familiar
architecture you’ll find in many applications. We’ll use this problem as an
introduction to testing in general and Mockito in particular.

The final product will have three components:

1. A class called AstroGateway that accesses a RESTful web service to retrieve
the astronaut data in JSON form and then converts the JSON structure
to Java POJOs (plain old Java objects).

2. A class called AstroService that processes the Java POJOs and returns a
Map of strings to integers, where the map keys are the spacecraft names
and the map values are the number of astronauts aboard each.

3. An application class that drives the process, which in our case will be a
series of test cases that invoke the right methods and print and verify the
results.

A Note on Java Versions

Mockito requires only Java 8. The current Long Term Support
(LTS) version of Java is 17, but as of 2022, the community is split
between Java 8 and the previous LTS version, Java 11.

The implementation of this “astro” system uses the HTTP client
added to Java in version 11, and 11 is the default version of Java
we’ll use throughout the book. None of the code uses records,
sealed classes, pattern matching, switch expressions, or any of
the other newer features added since 11.

For those people still on Java 8, first, you have my condolences,
and second, I’ve included an alternative implementation of the
gateway that uses the Retrofit library. Hopefully, this way, every-
body will feel included.

We’ll be testing an existing code implementation that we’ll discuss as we go
along. If you’re curious about the details and want to see them now, take a
look at the book’s GitHub repository.3 The relevant code is in the com.kousen-
it.astro package.

3. https://github.com/kousen/mockitobook

• Click HERE to purchase this book now. discuss

https://github.com/kousen/mockitobook
http://pragprog.com/titles/mockito
http://forums.pragprog.com/forums/mockito

As a reminder, to add Mockito to a project, the only dependencies required
are mockito-core and, when using the Mockito JUnit 5 extension, as here,
mockito-junit-jupiter.

With the project configured for testing, let’s add the classes to do the job.

Creating the Basic Classes
The astronaut data comes from the free RESTful web service at Open Notify4

called People in Space.5 It supports only HTTP GET requests, but it’s free and
doesn’t require registration or any kind of key. It returns a JSON response
showing all the astronauts in space at any given moment. If you send an
HTTP GET request to http://api.open-notify.org/astros.json, you’ll get back a response
similar to this:

astro_data.json
{

"message": "success",
"people": [

{
"name": "Bob Hines",
"craft": "ISS"

},
{
"name": "Oleg Artemyev",
"craft": "ISS"

},
...,
{
"name": "Cai Xuzhe",
"craft": "Tiangong"

}
],
"number": 10

}

As you can see from the sample, the response includes the total number of
astronauts and a collection called people which contains name and craft combi-
nations for each astronaut. Java POJOs make a convenient structure to hold
the parsed JSON information. Only two Java classes are needed:

• Assignment, representing the astronaut name and craft pair, and
• AstroResponse, which shows the total number of people in space, a success

message, and the people array or list of the assignments.

4. https://open-notify.org
5. http://open-notify.org/Open-Notify-API/People-In-Space/

• 2

• Click HERE to purchase this book now. discuss

http://api.open-notify.org/astros.json
http://media.pragprog.com/titles/mockito/code/astro_data.json
https://open-notify.org
http://open-notify.org/Open-Notify-API/People-In-Space/
http://pragprog.com/titles/mockito
http://forums.pragprog.com/forums/mockito

The Java classes will be implemented as traditional POJOs, meaning they’ll
have attributes that match the JSON properties, along with getter and setter
methods. Here’s the Assignment class:

Assignment.java
public class Assignment {

private final String name;
private final String craft;

// constructors, getters and setters, toString
}

Here’s the AstroResponse class:

AstroResponse.java
public class AstroResponse {

private final int number;
private final String message;
private final List<Assignment> people;

// constructors, getters and setters, toString
}

To access the RESTful web service, we’ll use the Gateway6 design pattern. A
gateway is a class that encapsulates access to an external resource. In this
particular case, we need only a single gateway, called an AstroGateway, that
connects to the remote service, downloads the astro data, and converts the
JSON response into records. Java is happiest when you use interfaces, and
doing so here will make testing easier because we’ll be able to substitute in
a fake gateway when we need one. Therefore, add a Gateway interface that
contains a single method called getResponse:

Gateway.java
public interface Gateway<T> {

T getResponse();
}

The getResponse method returns an instance of its generic type.

The concrete class implementing the Gateway interface will be AstroGateway. You’ll
implement it using either the HttpClient API if you’re using Java 11+, or the
Retrofit 27 library if you’re still on Java 8.

6. https://martinfowler.com/articles/gateway-pattern.html
7. https://square.github.io/retrofit/

• Click HERE to purchase this book now. discuss

Creating the Basic Classes • 3

http://media.pragprog.com/titles/mockito/code/Assignment.java
http://media.pragprog.com/titles/mockito/code/AstroResponse.java
http://media.pragprog.com/titles/mockito/code/Gateway.java
https://martinfowler.com/articles/gateway-pattern.html
https://square.github.io/retrofit/
http://pragprog.com/titles/mockito
http://forums.pragprog.com/forums/mockito

Abstraction Theater

Introducing an interface (Gateway) with only a single implementation
(AstroGateway) may feel like an unnecessary distraction. In this
particular case, there will be two implementations: one that uses
the new HttpClient API added in Java 11 and one that uses the
external Retrofit library, which you can use if Java 11 isn’t avail-
able. Only the HttpClient version will be included here, but both are
contained in the GitHub repository for the book.

We’ll get to the tests next in Adding Unit and Integration (End-to-End) Tests,
on page ?. Here we’re defining the basic classes, so let’s also define the
AstroService class, whose job is to convert the records returned by the gateway
into a Java Map. The class needs only a single method, called getAstroData, with
the following signature:

public Map<String,Long> getAstroData()

The AstroService class uses the gateway to access the remote web service. The
gateway retrieves the remote data and turns it into either a Success instance
containing an AstroResponse or a Failure instance containing any thrown exception
if not. Assuming it’s successful, the service then extracts the data we want
and converts it to a map, where the keys are spacecraft names and the values
are the number of astronauts aboard each one.

In the end, our application instantiates the AstroService, calls its getAstroData
method, and processes the results. The results (based on the JSON data
shown earlier) will be as follows:

3 astronauts aboard Tiangong
7 astronauts aboard ISS

Now let’s turn to the tests necessary to verify the implementation works as
desired.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mockito
http://forums.pragprog.com/forums/mockito

