
Extracted from:

Portable Python Projects
Run Your Home on a Raspberry Pi

This PDF file contains pages extracted from Portable Python Projects, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Portable Python Projects
Run Your Home on a Raspberry Pi

Mike Riley

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-859-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Seating the Sensor
The SensorHub package includes four metal posts that can help secure the
SensorHub more permanently to the Pi. I suggest you test your SensorHub
attached to the Pi’s GPIO pins first before securing it with the posts. When
you’re satisfied with the long-term use of the SensorHub, you can make the
installation more secure by screwing the posts in place. Look at how much
more secure the SensorHub sits on my Pi 4 in the next photo.

When you power on the Pi with the SensorHub correctly attached, the Sen-
sorHub’s red LED power indicator located in the upper-left quadrant on top
of the SensorHub will remain constantly illuminated. You may also see a blue
LED near the middle-right edge of the SensorHub occasionally turn on and
off. This LED lights up whenever motion is detected within the last five sec-
onds. You can verify this by waving your hand over the board to watch this
detection occur.

Since we’ll be using the Philips Hue platform to turn on and off a Hue smart
plug connected to a fan (or other appliance that may be better suited for your
needs), we’ll be calling upon the phue third-party Python library. Install the
library into your virtual environment:

$ sudo pip3 install phue

Before we can start sending commands to the Hue bridge, we have to register
it first.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mrpython
http://forums.pragprog.com/forums/mrpython

Bridge Registration
When you installed the Hue system, you needed to press the sync button on
the top of the Hue bridge for your Hue smartphone app to talk to the unit.
Philips has adopted a basic means of security to prevent anyone nearby from
gaining unauthorized access to your Hue network. By pressing the button
on the Hue bridge, you are authorizing the application requesting control
access.

To do this for Python scripts running on the Pi, you first need to register with
the bridge by connecting to it within thirty seconds after the Hue bridge button
has been pressed. You’ll also need to know the IP address of the Hue bridge
on your network, which you should be able to identify from your network
router’s dashboard, similar to the way the Pi’s IP and MAC address were
identified back in Finding the Pi on Your Network, on page ?.

Create the following script in your huefan directory, name it register.py, and add
the lines of Hue bridge registration code to this file:

huefan/register.py
from phue import Bridge❶

huebridge = Bridge('YOUR_HUE_BRIDGE_IP_GOES_HERE')❷

huebridge.connect()❸

Let’s take a quick look at what this three-line Python script does.

❶ Using the from Python keyword, we can import a specific class or function
from a module and assign it a to an instance variable. In this case, we
import Bridge from the phue module for use in our script.

❷ We pass the IP address of our Hue bridge to Bridge and assign its result
to the huebridge variable.

❸ As long as the button on the top of the Hue bridge was pressed a few
seconds before this script is run, the Hue bridge will register our Pi and
grant it the ability to control other Hue-registered devices on the network.
Once you’ve successfully registered your Pi with the Hue bridge, there’s
no reason to call the connect() again unless you use a different Hue bridge
or another Pi to run your Hue scripts on.

Replace the YOUR_HUE_BRIDGE_IP_GOES_HERE with the IP address of your Hue bridge.
When you’re ready, press the sync button on top of your Hue bridge and to
allow it to automatically register new devices asking to register with it. In our
case, this new device is our Pi running this script.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/mrpython/code/huefan/register.py
http://pragprog.com/titles/mrpython
http://forums.pragprog.com/forums/mrpython

Execute the register.py script within thirty seconds of pressing the Hue bridge
button. If you fail to run the script in time, you will have to press the Hue
bridge button and run the registration script again.

$ python3 register.py

If no output appears after you execute the script, then you successfully reg-
istered your Pi with the Hue bridge. You can now use your Pi and the phue
scripts you run on it to remotely control other Hue devices on your network.

If the script failed to connect(), it will provide details in the output errors. The
most frequent error for not being able to register is using an incorrect IP
address for the Hue bridge. This error is usually reported at the bottom of
the error trace as a socket.gaierror: [Errno -2] Name or service not known. Fix the IP
address and connectivity problem so that you can successfully register your
Pi with the Hue bridge before proceeding.

Registered Devices
To confirm your effort was successful as well as identify the name and ID of
the connected Hue smart plug, create and run the following listdevices.py script
that will connect to your Hue bridge and enumerate a list of Hue accessories
configured with the bridge:

huefan/listdevices.py
from phue import Bridge

huebridge = Bridge('YOUR_HUE_BRIDGE_IP_GOES_HERE')❶

lights = huebridge.lights❷

for light in lights:❸
print(light.name)

Let’s take a quick look at how this script connects to your Hue bridge and
identifies the other Hue devices it’s able to manage.

❶ Here we pass the IP address of our Hue bridge into the huebridge object
instance.

❷ Next, we interrogate the bridge lights collection and assign those details
about the Hue smart bulbs, smart plugs, and other Hue-controllable ac-
cessories to the lights variable.

❸ Finally, we use a for loop to iterate over the lights collection and assign each
item to the light variable. Then we print the name we assigned each of those
devices via the Hue smartphone app.

• Click HERE to purchase this book now. discuss

Registered Devices • 7

http://media.pragprog.com/titles/mrpython/code/huefan/listdevices.py
http://pragprog.com/titles/mrpython
http://forums.pragprog.com/forums/mrpython

The output of the script will list the names of the Hue lights, smart plugs, and
accessories you have registered and named with your Hue bridge. Identify the
name of your Hue smart plug from the list. In my case, I named my smart plug
“Fan”, a name I will use in the sample code. If you labeled your smart plug or
light a different name using the Philips Hue app on your smartphone, be sure
to replace 'Fan' in the code listings with the name of your Hue-labeled device.
For example, here’s the output shown after running the python3 listdevices.py com-
mand from within my Terminal window.

Now that we see our list of connected devices, we can turn them on or off
using a single line of Python code.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mrpython
http://forums.pragprog.com/forums/mrpython

