Extracted from:

This PDF file contains pages extracted from Enterprise Recipes with Ruby and Rails,
published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.
Copyright © 2008 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Recipe 24

High-Performance Parsing

Problem
,_J L \

Ruby is an interpreted language, which means it’s not as fast as its
compiled counterparts. By the time you read this, several Ruby com-
pilers will be available, but none of them will automatically solve the
problems described in this recipe. Usually, this is not a problem, but
it could happen that you create a Ruby program for parsing an XML
document that is too slow. Maybe you have developed it in record time,
but that doesn’t count much if it does not fulfill your customer’s needs.

In this recipe, you'll learn how to increase the performance of your XML
parsing code tremendously.

| Ingredients | N

e Install the LibXML® gem:

$ gem install 1ibxml-ruby

At the time of this writing, installing LibXML as a gem does not
work out of the box on the Microsoft Windows platform.

Solution
,_J L \

Let’s assume you have to create a Rails application that scans through
an XML file containing credit card transactions and displays all trans-
actions belonging to a particular credit card. The file might look like
this:

Download xml/libxml2/ccdemo/data/cc_xactions/20080729.xml

<?xml version='1.0'?>
<cc-xactions date='20080729'>
<cc-xaction id="100001" cc-ref="'2537403"' type='credit' amount='12.00'>
<text>Monthly bill.</text>
</cc-xaction>
<l-- ... -=>
<cc-xaction id='400224"' cc-ref='95932"' type='purchase' amount='19.99'>
<text>A new book.</text>
</cc-xaction>
</cc-xactions>

5. http://libxml.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/xml/libxml2/ccdemo/data/cc_xactions/20080729.xml
http://libxml.rubyforge.org/

24. HIGH-PERFORMANCE PARSING < 160

Each transaction has a unique identifier that can be found in the id=
attribute. All credit cards are identified by a reference ID, which is
stored in the cc-ref= attribute (using the credit card number to identify
a credit card is not allowed, which is why we use an artificial identifier).

If you get money from your customer, the type= attribute is purchase;
otherwise, it’s credit. amount= tells us how much money has been trans-
ferred, and the content of the <text> element appears on the cus-
tomer’s credit card bill.

The input files contain several thousand credit card transactions, and
you've tried all traditional methods already, but your application is still
too slow. You've measured performance and have come to the conclu-
sion that more CPU cycles are needed in the XML parsing code.

To solve this problem, we’ll use the LibXML library. It is a C extension
and embeds the GNOME libxml2 library® into the Ruby interpreter. Like
REXML, it uses XPath wherever possible. Our model looks like:

DownTload xml/libxml2/ccdemo/app/models/credit_card_transaction.rb

Line 1 require 'xml/Tibxml'

class CreditCardTransaction
XACTION_DIR = File.join('data', 'cc_xactions')

attr_reader :xaction_id, :cc_ref, :type, :amount, :text

def initialize(xaction_id, cc_ref, type, amount, text)
@xaction_id, @cc_ref, @type = xaction_id, cc_ref, type
10 @amount, @text = amount, text
end

def self.find_all(cc_ref)
xactions = []
15 input_file = "#{XACTION_DIR}/xactions.xml"
- doc = XML::Document.file(input_file)
doc.find('//cc-xactions/cc-xaction').each do |node|

if node['cc-ref'] == cc_ref
xactions << CreditCardTransaction.new(
20 node['id'],

node['cc-ref'],
node["type'],
node["amount'],
node.find_first('text"')
2)
end
end

6. http://xmisoft.org/

Report erratum

this copy is (P1.0 printing, November 2008)

http://media.pragprog.com/titles/msenr/code/xml/libxml2/ccdemo/app/models/credit_card_transaction.rb
http://xmlsoft.org/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=160

30

24. HIGH-PERFORMANCE PARSING

xactions
end
end

That does not differ much from our REXML solution, because both
libraries have a similar API, and they even use UTF-8 for encoding char-
acters internally.

In line 16, we read and parse our input file in a single step. The result is
a tree representation of our XML document. In line 17, we iterate over
all <cc-xaction> elements using the find() method. As with REXML’s
iterators, we can use an XPath expression to select the nodes we're
interested in (see Recipe 22, Use XML Files as Models, on page 146). In
line 20, we copy the content of an attribute, and in line 24, we copy
an element’s content. The controller action for finding all credit card
transactions is trivial:

DownTload xml/libxml2/ccdemo/app/controllers/credit_card_transaction_controller.rb

class CreditCardTransactionController < ApplicationController
def show
@xactions = CreditCardTransaction.find_all(params[:id])
end
end

The view looks as follows, and its result can be seen in Figure 5.2, on
the following page:

DownTload xml/libxml2/ccdemo/app/views/credit_card_transaction/show.html.erb

<% if @xactions.size == 0 %>
<p>Currently, there are no transactions.</p>
<% else %>
<table>
<tr>
<th>Transaction ID</th>
<th>Credit Card Reference</th>
<th>Amount</th>
<th>Text</th>
</tr>
<% for xaction in @xactions %>
<tr>
<td><%= xaction.xaction_id %></td>
<td><%= xaction.cc_ref %></td>
<% sign = (xaction.type == 'purchase') ? '+' : '-' %>
<td><%= sign + number_to_currency(xaction.amount) %></td>
<td><%= xaction.text %></td>
</tr>
<% end %>
</table>
<% end %>

Report erratum

this copy is (P1.0 prinfing, November 2008)

< 161

http://media.pragprog.com/titles/msenr/code/xml/libxml2/ccdemo/app/controllers/credit_card_transaction_controller.rb
http://media.pragprog.com/titles/msenr/code/xml/libxml2/ccdemo/app/views/credit_card_transaction/show.html.erb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=161

24. HIGH-PERFORMANCE PARSING

LibXML Test Application

800
| (<l>Jlc] [.18]1 @ http://localhost:3000/credit_card_transaction/show/2537403 aa-

Transaction ID Credit Card Reference Amount Text

100001 2537403 -$12.00 Monthly bill.

400224 2537403 +$19.99 A new book.

Figure 5.2: List of credit card transactions

Although we have read model data from an XML file and although we
have parsed the files using a C extension, we could still use Rails’ regu-
lar MVC pattern. By looking at the view, you cannot see where the data
came from.

| Discussion | \

So far, so good, but our solution does not differ much from a REXML
solution. Why should it be so much faster?

The secret ingredient is the raw power of C, but you cannot determine
how much faster your program runs by looking at the code. I have
provided a little benchmark that compares three functions that do the
same but use different parsers. The first one uses LibXML:

Download xml/libxml2/performance_test.rb

Line 1 require 'xml/Tibxml"'
def Tibxml_parse(xml_string)
xactions = []
parser = XML::Parser.new
5 parser.string = xml_string
doc = parser.parse
doc.find('//cc-xactions/cc-xaction').each do |node|
xactions << CreditCardTransaction.new(
node['id'],
10 node['cc-ref'],
node["type'],
node["amount'],
node.find('text').to_a.first.content
)
15 end
xactions
end

Report erratum

this copy is (P1.0 prinfing, November 2008)

http://media.pragprog.com/titles/msenr/code/xml/libxml2/performance_test.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=162

24. HIGH-PERFORMANCE PARSING

That looks exactly like the code we used in the CreditCardTransaction
class. The only difference starts in line 4. Here we read our input doc-
ument from a string and not from a file to create fair testing conditions
for all approaches. Here’s a solution that uses REXML:

Download xml/libxml2/performance_test.ro

Line 1 require 'rexml/document’
def rexml_parse(xml_string)
xactions = []
doc = REXML::Document.new(xml_string)
5 doc.elements.each('//cc-xactions/cc-xaction') do |node]|
xactions << CreditCardTransaction.new(
node.attributes['id'],
node.attributes['cc-ref'],
node.attributes["type'],
10 node.attributes["amount'],
node.elements['text'].text
)
end
xactions
15 end

This function should not contain any surprises, and for the sake of
completeness we’ll look at an Hpricot version, too (see Recipe 25, Work
with HTML and Microformats, on page 165 to learn more about Hpricot):

Download xml/libxml2/performance_test.ro

Line 1 require 'hpricot'
def hpricot_parse(xml_string)
xactions = []
doc = Hpricot.XML(xm1_string)
5 (doc/'//cc-xactions/cc-xaction').each do |node|
xactions << CreditCardTransaction.new(
node['id'],
node['cc-ref'],
node["type'],
10 node["amount'],
(node/ "text ') .inner_html
)
end
xactions
15 end

Hpricot was always meant to be an HTML parser, but its XML() method
makes it possible to parse XML documents, too.

As you can see, the three solutions differ only in a few characters, and
now we use Ruby’s Benchmark module to compare them.

Report erratum

this copy is (P1.0 printing, November 2008)

http://media.pragprog.com/titles/msenr/code/xml/libxml2/performance_test.rb
http://media.pragprog.com/titles/msenr/code/xml/libxml2/performance_test.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=163

24. HIGH-PERFORMANCE PARSING < 164

DownTload xml/libxmi2/performance_test.rb

require 'benchmark'

xml_string = I0::read(input_file)

Tabel_width = 8

Benchmark.bm(label_width) do |x|
x.report('rexml: ') { rexml_parse(xml_string) }
x.report('Tibxm1: ') { Tibxml_parse(xml_string) }
x.report('hpricot:') { hpricot_parse(xml_string) }

end

First, we feed our two functions with an example document containing
1,000 credit card transactions ('ve run those tests on an Apple Mac-

Book Pro):
mschmidt> ruby performance_test.rb 1000

user system total real
rexml: 3.110000 0.040000 3.150000 (3.189711)

Tibxm1: 0.050000 0.010000 0.060000 (0.060367)
hpricot: 0.510000 0.000000 0.510000 (0.523038)

That’s pretty impressive already, but let's see what happens when we
parse 10,000 elements:
mschmidt> ruby performance_test.rb 10000
user system total real
rexml: 218.810000 1.640000 220.450000 (222.433778)

Tibxm1: 2.020000 0.110000 2.130000 (2.168987)
hpricot: 6.600000 0.060000 6.660000 (6.727825)

Wow! As you can see, not only is LibXML much faster than REXML, but
it is really fast! Regarding this figures, it would be completely impossible
to provide a satisfying user experience using REXML, but the perfor-
mance of LibXML is still acceptable. Hpricot has excellent performance,
too, but when you have to install a separate library anyway, you should
install the fastest one. In addition, LibXML fully implements the XML
standard (and some of its relatives), while Hpricot does not.

Despite all this, you have to consider some shortcomings: although
LibXML is probably one of the most complete XML implementations
available, its Ruby binding is still in an early stage of development, and
as with all C extensions, you have to test your software intensely. You
especially have to check for memory leaks!

REXML is convenient and an adequate solution for small XML docu-
ments. But the API of LibXML is nice, too, and it’s currently the only
library that enables you to handle really big documents sufficiently fast.

Report erratum

7 is (P1.0 printing, November 2008)

http://media.pragprog.com/titles/msenr/code/xml/libxml2/performance_test.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=164

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers
will be there with more titles and products to help you stay on top of your game.

Enterprise Recipes with Ruby and Rail’s Home Page
http://pragprog.com/titles/msenr
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments in the news.

If you liked this PDF, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: pragprog.com/titles/msenr.

ContoctlUs

Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com
Non-English Versions: translations@pragprog.com
Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/msenr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/msenr
www.pragprog.com/catalog

