Tt .
Pra] e‘matlc

ogramimers

Real-World Kanban
Second Edition

Do Less, Accomplish More
with Lean Thinking

Foreword by Henrik Kniberg
edited by Michael Swaine

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 2

Using Kanban in the Enterprise

It’s easy to lose focus on what is important in software development—make
useful products and make it simple to do so. Let’s take a look at how Enterprise
Kanban helped a traditional company do just that.

Very few companies start off improvements with a clean slate. They carry
legacies—people, technology, roles, culture, market share, and processes.
The legacy proves the company was successful at some point, but now results
in heavy processes and structures, which slow down productivity and make
things hard to change. There is a lot of bureaucracy. At the same time, hidden
quality problems make it tempting for managers to call for even more control
and coordination.

Let’s see how a company learned to define product ideas, keep track of status,
and release new features faster with Enterprise Kanban.

The Challenge: Improving Time to Market

We look at Company H, which has been in business for 100 years, for our
first case study. One of the early pioneers in computing, the company has a
hefty tech stack—more than 300 systems—dating from the 1970s. This is a
challenge because Company H is competing with newer companies that aren’t
carrying the same kind of technological and organizational baggage. The
competitors are fast-moving and aggressive, and Company H has to become
more effective and modernize its products to compete.

As you can see in the following diagram, the marketing department at Com-
pany H has three units, each targeting a specific market segment. IT is also
split into three units: development, change management, and operations.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise ® 4

Change

E P i'| Development Operations !
' | Market unit B i management ;
! | Market unit C E

Company H employs a total of 650 people, with roughly 100 involved in new
product development. All the employees were somehow, directly or indirectly,
affected by the Kanban board.

What was Company H’s key challenge? To ship modern products that appeal
to buyers faster in order to remain competitive in the marketplace. One
problem was communication and handovers.

“I requested a suit, but all I got was a lousy T-shirt,” a marketing manager
said, regarding the company’s communication problems.

The original product concept was getting diluted or lost somewhere along the
way. Product managers weren’t clearly communicating the things that made
the product unique to the developers, or the developers were under pressure
to ship quickly and were cutting corners. The developers felt as if they were
merely small cogs in the machinery and were missing the big picture of what
they were creating,.

Why Change Was Necessary

Internally, many people within Company H felt improvements had stalled.
The development teams had adopted Agile to initial success, but big projects
still dragged on for too long. Company H had just aborted an earlier project

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

How We Got Started ¢ 5

aimed at renewing the product platform, which had been overdue for well
over 18 months and was still far from finished. Just because the teams are
agile doesn’t mean the company is.

No one seemed to know the exact state of the product ideas under develop-
ment. These ideas existed partially in several Scrum teams’ product backlogs.
In some cases, they were in different stages of testing at the same time. Adding
an Enterprise Kanban board to see the true progress of new product ideas
was a natural step. This would drastically simplify marketing and would allow
us to see what stage the product idea was in.

We wanted the team to take more pride in and responsibility for the overall
results—what we call product idea success. Let’s look at how we did something
about it using the Kanban board.

How We Got Started

After clarifying and agreeing on why change was needed, it was time to take
the first steps. It's always tricky figuring out how to get started. We approached
this challenge by selling our ideas to the people involved. Obviously, one of
the ideas was to start using Kanban to visualize end-to-end flow.

We invited the people and the teams involved and presented our findings and
reasons and the four or five changes we wanted to try out. We then asked for
feedback to see which ones they might consider trying out. We did this by
presenting the ideas one by one and asking people to thumb vote if they felt
ready to try out the idea.

Thumb voting is a very simple decision-making technique and helps teams
jump into action:

e Thumb up means, "Yes! Let’s go!"
e Thumb to the side means, "Hmm, I'm unsure but willing to give it a try."
e Thumb down means, "No way, this is crazy!"

Using this technique, four out of our five proposed changes received a go-
ahead. Asking for feedback on the changes before deploying them might seem
strange. What if we had gotten a “No!” on all of our ideas? Let’s consider the
worst case: we move forward, only to find silent resistance from the people
we are depending on. By presenting the reasoning behind the proposed change
(the why) and talking about what we’ll do, we treat people as intelligent,
thinking beings. We get better solutions and consider unforeseen constraints
before we even get started.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise * 6

It Is Important to Ask for Feedback Before a Change

As a general rule, people are more likely to agree to an idea or
change if they get to weigh in first. People are more willing to accept
an alternative plan if they feel their concerns have been heard as
part of the process. If you get a negative response, then ask for
suggestions. Doing nothing is never the better option. Letting
other ideas bubble up always is.

Decision made, we set up our Enterprise Kanban board to help us visualize
the process flow. We needed to see how the teams moved from a simple idea
to delivering something valuable to the customer.

Set Up the Kanban Board

We had to first decide what to put on the board. Each department had its
own nomenclature and preferred level of detail to describe various tasks. We
decided to include only product ideas and features on the Kanban board.
Product ideas represented a unit of something with a sales value. Features
represented a change in the product. By getting marketing and IT to agree
on what to put on the board, we now had a shared language to communicate

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

How We Got Started ¢ 7

status. If someone from marketing wanted to know the status of a particular
idea, the information was on the Kanban board.

Shared Language Across Departments Is Important
To address problems early, we need a common vocabulary to define
the granularity of the features we're working with and a way to
communicate the feature’s current status. If each function has its
own nomenclature and level of granularity, too much information
will be lost in translation. This should be the first thing you
address if you have multiple groups involved.

We filled the board with ongoing and upcoming product ideas. Mapping current
sprint items to ongoing product ideas was a fun challenge, but it took a day
or two to get right. Getting the overview was difficult because each team’s
sprint backlog contained different parts of the product under development.

At this point, we already saw the Kanban board’s benefits. We spotted items
from product backlogs that wouldn’t enhance the overall product or actually
benefit the teams. The board also made it easier to see the number of product
ideas floating around as well as the real development status of individual
ideas.

Where to put our Kanban board was another important decision. The board
tied together four functions: marketing, development, change management,
and operations. It made sense to put the board in a corridor outside the
development teams’ location. That way, the team members interacting with
the board most often were the closest to it, and people who didn’t interact
directly with the board saw it at least twice a week during the standup
meetings. (We cover more about this in Focus Behavior with the Board, on

Most of the people involved with the various concepts passed by the board at
least once a week. But we were lucky that most of the people worked in the
same location. If we had been spread out geographically, we would have
needed an electronic version of the board or replicated physical boards in
each location to make sure we all saw the same picture.

Focus on Flow, Not Sprints

With the board in place, we asked the development teams to shift gears.
Instead of constantly running sprints, we asked the developers to think about
continuous flow. This would reduce wait time but also allow developers to
work on product ideas until the ideas were finished and of the correct quality,

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise * 8

as opposed to shipping them just because the sprint had finished. It repre-
sented a shift from being date-driven to being quality-driven.

At first, the development teams were cautious about this change. In their
view, sprints worked. But they were also keen to be involved earlier in the
product development process and feel less like a cog in the machinery, so
they agreed to give flow a try.

Reintroducing Sprint Planning

After a couple of months, some of the development teams reintro-
duced light sprint planning because they needed a way to see what
each team member was working on. They also wanted a way to
work together when slicing features into stories. This was okay
and fit our overall goal of continuous flow because the teams did
not spend sprint planning trying to estimate how much work they
could fit into sprints. Instead, they used sprint planning to focus
on product ideas.

Getting the board set up and putting the ideas on it was just the beginning.
Let’s look at how we defined the workflow and how each step corresponded
to the board.

How the Process Worked

For a process to be useful, the people who use it have to take ownership. To
do that, the process has to be simple. The following figure shows an overview
of the Enterprise Kanban workflow:

Enterprise Kanban overview

.. | Concept @
8™ | v (Gal @@
Release Client
Pl‘_OdUCt Change Sys admin
idea Collaborative management
design
@ Dev teams

Prioritize top 3 product ideas

Product process

Product development phases

@@@
<) 500

Problem Solution ideas Prototyping System validation Runnable
framing & sketches solution

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

How the Process Worked ® 9

Let’s take a closer look at some of the elements—namely, Concept and Collab-
orative Design.

A Quick Explanation About Concepts

A concept refers to a product idea written down on an A3 (12" x 16") piece of
paper. With concepts, it is easier to share the big-picture idea across multiple
teams and to abort ideas early in the development process if no one cares
about them. Concepts can also help to decentralize risk because teams can
make tradeoff decisions without having to get permission from someone else.
Concepts help us maintain the integrity of the original idea as it passes
through each phase of development.

Traditionally, product managers or product owners are responsible for product
decisions. We took a slightly different approach. We wanted the most passion-
ate person behind the idea to drive it, regardless of role. But this came with
a condition: "You want it, you make it happen. No one will make the product
happen for you. There is nothing to hand over to anyone. We think you are
the right person to handle it because you are passionate about it.”

The concept is just an idea at this point. The details come out of the collabo-
rative design meeting.

Adopt Collaborative Design

We set up collaborative design to achieve three things. The first goal was to
reduce wait time. By having multiple minds looking at a problem, we would
get multiple perspectives quickly. No need to wait for the next iteration to find
out whether something was doable.

The second goal was to eliminate the “We're only a small cog in the machinery”
feeling among team members. Since one member of each team participated,
that person would bring back to the team an understanding of the problem
addressed plus the reasoning behind design decisions.

The third goal was to get creative height during design. We wanted to avoid
turning a breakdown into a lame exercise in fitting the product idea into the
existing architecture. Our goal was to always deliver two solutions to any
problem.

A facilitator—generally a Scrum master from one of the development teams
who had received specific coaching—calls and runs the collaborative design
meeting. One developer from each team participates in the meeting, with
specialists getting pulled in as necessary. A specialist may be necessary if
the design requires integrating with outside teams, for example.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise ® 10

During the meeting, the concept owner paints the picture, or describes the
idea and walks through the concept. The meeting participants carve out two
to four potential solutions in the discover phase. Then the group digs into
each solution as part of the explore phase. Finally, the group discusses the
pros and cons of each solution and selects one or two options to move forward
with. The facilitator is responsible for moving the group through each step,
balancing coming up with new ideas and focusing on details.

A good facilitator ensures that multiple options are explored, especially for
ideas that were rejected unintentionally or that got lost during the conversa-
tion. Facilitators should also inspire team members to think about the problem
from different angles: “This is a valid solution, but what would the simplest
solution look like?” It’s also important to transcribe the discussion. Ideas are
often discarded unintentionally and end up getting lost. Transcribing lets
participants review earlier conversations and solutions.

Facilitators also pay attention to participants and pick personalities which
balance each other. Few ideas emerge from a homogeneous group. The goal
is to expose different angles and encourage participants to build on each
other’s ideas. One way to balance the team is to have a rotating membership.

Don’t Come with Pre-Decided Solutions!

In a few cases, we let a senior developer and the concept owner
pair up and walk through the idea together before coming to the
o collaborative design session. That didn’t work out well at all
because it seemed like a solution was already pre-decided by the
time of the meeting. “Why am I here to give you ideas? It seems

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

How the Process Worked ® 11

Don’t Come with Pre-Decided Solutions!

like you've already decided on the solution” a developer said during
one such meeting.

So we learned to bring in fresh problem statements rather than
half-finished solutions.

Work with the Kanban Board

Now that we are familiar with the overall workflow, let’s see how it translates
to the Enterprise Kanban board. As we saw earlier, a product owner writes
down a product idea, a concept. This concept is then prioritized by the head
of each marketing department before it is placed on the Kanban board.

A concept represents a marketable idea cut across multiple systems. To give
a sense of scale, it could be sized in months. Each concept in this situation
included a description of the multiple features needed to deliver the intended
market impact. Each feature was split into stories tracked by individual
development teams. In total, we had three granularities of work.

Concept

(A3) Concepts — marketable idea, tracked on Kanban board.

; Features — value for at least one user. Part of a concept.

Story — deliverable slice on a feature in a development team, tracked by each team.

We decided to track concepts across the board because they represented the
marketable product ideas as our customers saw them. And we wanted these
concepts to be the focal point of conversations between marketing and IT. At
first, we also experimented with keeping each feature in a concept across the
board. But then we thought better of it because we felt that we lost the
overview of what was important. The features could easily be looked up any-
way, since all the concepts were up on the wall right next to the Kanban
board.

Let’s take a look at the board.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise ¢ 12

Product | Next Ready for Dev System Production Acc | Ready| Cust.
ideas 3] dev[1] [51 test test | to use | usage
In prog. Done Data Graphics Portal Cust. Ready Testing | Release Custom Popular
Market) service for | ready for adapt.
unit A ! test 1 prod. !

Market i ' '
unit B 1

| : Oh crap!

Market | 4 ' i
) ‘oncept ' H I
unit C ; ; | I | 1

As mentioned earlier, what flowed across the board was concepts, each with
a designated concept owner.

How did we make product portfolio changes? Each marketing department
was responsible for a defined customer segment and maintained a product
portfolio of both features in production and ideas under development. If they
discovered that the portfolio needed to be improved, the department either
wrote a new concept or asked a concept owner to make the necessary changes
to an existing concept to improve overall experience.

Let’s take a closer look at each column on our Kanban board

Product Ideas
Each marketing department was responsible for keeping two product
ideas prepared here. For a product idea to exist on the board, it had to
have a prepared concept.

Next

These were the next three product ideas the team would work on. This is
where we began lead-time measurements. From this point on, marketing
could not insert new concepts or make major changes to scope. Marketing
could cancel the idea, in which case it would be moved to the Oh Crap!
section at the end of the board. At Company H, managers from each
marketing department and the head of development met in front of the
board every 14 days to review the priorities. This was an opportunity to
discuss and agree on whether an investment in technical debt made sense
for the teams.

Ready for Dev
At this point we evaluated different solution options and how they fit the
problem, and decided which teams would be impacted. As we saw in Adopt

team participated in the meeting.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

How the Process Worked ® 13

Dev
The product ideas progressed over multiple teams. Before a product idea
moved to the System test column, the teams and the concept owner vali-
dated the product’s usability and fit for purpose.

System Test
This was basic verification to see whether the product worked from a
system perspective. Integration and deployment on production such as
platform, maintainability, data, and stability over time would be verified.

Production
The release was moved into production. Customer-specific branding and
configurations would be added if necessary.

Acc. Test
Validation of the final experience by the concept owner.

Ready to Use
Ready to be taken into use by customer.

Customer Usage
This represented feedback from customers. If they liked it and used it, it
was deemed Popular; if it didn’t work out, it was deemed Oh Crap!

We learned early on that some key impediments could not be tied directly to
a single product idea because they spanned several ideas. To ensure that we
acted on them, we added a section on top of the board where each development
team could signal if some factor was impeding their progress.

While it may seem trivial, this sent an important signal that we did care about
blockers and we weren’t going to proceed until we had fixed them. It was an
important leadership signal showing that these things mattered, and we fre-
quently used it early in our Kanban implementation. As we solved a couple
of the key blocking issues, we used it less frequently. Currently, it is rarely
used. It is still on the board mainly to assure the teams that if they raise a
serious concern, they will be heard. This section is actually an unfiltered

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise ¢ 14

communication channel all the way to both the head of marketing and the
head of development.

You might wonder why some of these blockers weren’t addressed before. We
had been using Scrum and development teams for some time. A simple
explanation is that each of these problems was too big for a single team to
solve. All required cooperation across teams and sometimes functions to
address. Now we were able to focus across functions to address them.

How We Decided What to Invest In

We now had several product ideas—concepts, if you like—on the board. Each
marketing department had prioritized its requests, but the team had yet to
decide which concepts would get promoted from the Product Ideas column
into the Next column.

One of the most commonly used methods for investment decisions is to cal-
culate return on investment (ROI) for new development projects. Traditionally,
costs are estimated by forecasting the number of man-hours needed to com-
plete the project. ROI helps you decide whether the project will be a profitable
investment and figure out a sensible IT budget for it.

We invariably had to make tradeoff decisions on what to develop due to budget
and resource constraints. So we would do a value vs. effort judgment one way
or the other. The problem happened when our effort was largely directed to
reducing cost uncertainty rather than value. The value of the product idea
normally carries higher uncertainty than the cost. Therefore, spending too
much effort estimating the cost side of the equation is not effort well spent
because you are addressing the wrong uncertainty.

Rather than trying to estimate effort and cost this early in development, we
emphasized reducing product value uncertainty instead.

Our approach to estimating the cost component was simple. We used two
simple assumptions: first, cost, of which headcount is a main component
that tends to remain fairly stable over time. Changes do happen, but they are
usually rare. Second, Time through the system = effort consumed. We used
estimated lead time for the product idea to learn how much effort it had
consumed.

With the cost range covered, focus could now be shifted to the value compo-
nent of each product idea to make the decision about what to invest in.

Second, Time through the system = effort consumed: Use estimated lead time
for the product idea to learn how much effort it has consumed.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

How the Process Worked ® 15

With the cost range covered, focus can now be shifted to the value component
of each product idea to make the decision on what to invest in.

One key insight that came to light during this process was that it was
important to ensure that each marketing department got its fair share of the
development capacity. But this didn’t need to be resolved through budgeting.
(See Make Sure Each Marketing Department Got Its Fair Share, on page 15.)

This approach made it possible to avoid paralysis by analysis and to work
with low overheads.

Match Estimate Effort with the Decision
An all-too-common mistake I see product development departments
make is determining cost and time estimates on too fine a granu-
larity. There is nothing wrong with making ROI calls, but the time
6 invested in making them should be linked to the decision you are
trying to make.

Clarify the decision you are trying to make first; then decide what
makes a reasonable investment to make your decision.

Make Sure Each Marketing Department Got Its Fair Share

Each marketing department focused on identifying the next product idea that
would most likely succeed in the market. And the department heads met in
front of the Kanban board every 14 days to review priorities. This guaranteed
transparency.

Each marketing department contributed an equal amount (1/3 each) toward
the IT budget. This meant that each department got its proportional part of
development and was guaranteed to get every third product idea. This rule
could be adjusted if the heads of each department agreed that a certain
product idea or improvement would be more valuable to the company. For
example, all the departments in Company H overruled the “every third product
idea” rule when they agreed that a concept that would improve performance
was more important than other concepts on the board.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise ¢ 16

Product Flow under Ready
ideas WIP control to use

Mark

e 10) L
Market

g —
Market

e

How Teams Decided What to Work On

A question that surfaced early was what we should do about other work that
was not directly related to the Kanban board. To avoid micromanagement
and overloading the board, we decided on a decision rule to help organize the
board:

¢ Fifty percent of work should be product idea oriented (taken from the
Kanban board).

e Twenty percent would be improvements (if there were none from the
enterprise board—this was left to the team to decide).

e Twenty percent would be bug fixing.
e Ten percent would be quick fixes, answering questions, and so on.

Each team was given the mandate to make the call on whether to pick up
work when approached by external parties as long as they kept these rough
guidelines. We also clarified that we wanted each team to keep visualizing
the work they did on their team board. This allowed both teams and stake-
holders to spot deviations to the rule. One example of what we learned was
that one team was working on very big features, each of which seemed to
drag on forever. We broke down these features into smaller slices. This allowed
the team to make progress easier and provided greater flexibility to absorb
unexpected changes, such as helping out other teams.

Focus Behavior with the Board

To create a shared understanding of current status and to address problems,
we created a standup meeting. We decided on 15 minutes twice a week. This
ensured that stakeholders working in other parts of the building would get

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

How the Process Worked ® 17

a regular overview of the ideas at work. It also ensured that key stakeholders
knew they could get in touch with each other at regular intervals.

DB 2 8

< "Walk the flow”]
T T T T

_ 2 times/week

Vlr\\lﬁ/larketing Sysadmin

g, Dev team Change N
@ management ___---=""
Marketing (x3) :
If active product
Sysadmin
team
On demand

Dev team (x4)
Every time

Change
mgmnt team
Every time

At first, we asked for a (minimum) representation by each function at the
standup. That meant three people from marketing (one per function), six from
development (one per team plus the head of engineering), one from change
management, and one from operations. Specialists were pulled in on an as-
needed basis. Our facilitator at these meetings and the owner of the Enterprise
Kanban board was our head of product development.

Operations remarked after a while that there was rarely an item on the board
that required their input, so we simplified overall attendance to, “If you have
something of interest on the board, you come to the standup.” And we found
that worked better.

Under the new rule, concept owners (marketing people who had active product
ideas under development) would always be at the meeting, as well as one
representative from each development team (if they were working on an active
concept). We pulled in specialized resources, such as system administrators,
or outside teams as needed.

To make sure the standup meeetings ran smoothly, we stuck to a simple
agenda. First, we walked the flow. The goal of this step was to find out whether
there were any blockers preventing progress. We walked this from the back
of the board forward. If a blocker was identified, we asked who would address
the situation. One person would be assigned the responsibility for dealing

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise ¢ 18

with each blocker. We avoided discussing the problem during the standup
meeting because that should be done afterward. Before ending the meeting,
we recapped important points (for example, who owned each blocking event).

We officially ended meetings with a “Thank you, everyone—we are done for
today.”

Keeping Meetings Short
With anywhere from 10 to 20 people from different teams and
divisions in front of the board, keeping these meetings short was
key. We learned to arrive prepared and to study the board in
advance, instead of tripping over the typical “oh, what was this
about again?” queries while people patiently waited. It worked—we
are still holding standup meetings twice a week.

The idea of having a standup is to see and act on problems. This means the
forum needs to have decision-making authority on both product-level calls
(Should we release this now or later? Should Product A stand back for Product
B?) and technical issues (Who are the right people to address this technical
problem?). Make sure the relevant people are at the meeting, or grant decision-
making authority to people attending. This way, the standup truly becomes
a decision-making forum and not just a vehicle for status reporting.

How We Continuously Improved

Take a look at the workflow again in How the Process Worked, on page 8.
The workflow takes the product idea fromconcepttocollaboratwede&gn
development, change management, and product release. Under Enterprise
Kanban, however, you run with the idea all the way to working with the client.
This means we are not finished when the product is released. We are done

when the customer actually uses the product.

The most valuable things learned in product development come from user
feedback regarding the product. Whether the feedback is good or bad, hiding
it delays the learning process (at best) and can be detrimental to product
development (at worst). It's easy to get distracted when you measure parts
rather than the whole, thus failing to see the forest for the trees. If you want
to improve at the system level, you need to measure and share feedback from
this level, too.

Continuous improvement can be run in many ways. We decided that the most
important information came from the usage (or in the worst-case scenario,
non-usage) of our products. So we made this information the foundation of

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

How the Process Worked ® 19

our improvements. We started by visualizing the outcome of our development
at the end of our Kanban board.

N

7 -
Product | Next Ready for Dev System Production Acc Readyy Cust. \
ideas [3] devyi] [51 test test | to usq | usage

T

Inprog. Done Data Graphics Portal Cust. Ready Testing| Release Custom Popular
Market Fod s for | Gerr ok

unit A ! test 1 prod. 1
1
H 1

Market
unit B

Oh crap!

B -

Market
unit C

P

7
\ 7

-

This became our most important feedback loop—were we delivering things of
value? If the customer did not like the product idea, it was put into the Oh
Crap! area. Conversely, if the customer liked the product idea and it became
frequently used, it would go into the Popular area. If an Oh Crap! event
occurred, we brought together the concept owner, the teams involved, and
the facilitator to perform a root cause analysis. This then became the input
to the changes we needed to make.

One of the key changes we did when we started Enterprise Kanban was to
replace the sprint demo with a company demo, which we ran one day before
release. Releases ran at four-week intervals. At this event, new product ideas
were demoed by the teams, allowing people throughout Company H to see
what was going out.

But we added a step to the demo agenda. Based on the previous release,
Marketing would demo how products were being used and share customer
feedback and comments. This was much appreciated by the development
teams and gave engineers the opportunity to learn about how the products
were being used by the clients.

When the teams used Scrum, they ran sprint demos. Unfortunately, these
demos inevitably took on a development bias at the expense of user value.
When we shifted to company demos to focus working product ideas, the
conversations became more about market reaction and product usage. Sprint
demos were replaced by continuous feedback on product fit between the
concept owner and the active development team.

Continuous Feedback

usefulness of a product under development, alarm bells should

0 If for any reason you are not able to continuously validate the
ring. Regardless of your choice of development method, this is

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise ¢ 20

Continuous Feedback
your first clue that something will go wrong. Every new product
needs at least one revision before getting it right—this is your key
to corrective action. The art of slicing (turning big things into small)
and continuous validation of working software are two key compo-
nents that can help you get it right.

Use Metrics Effectively

In software, early indicators of success or failure often show up in the form
of observations by people close to the problem. Experience helps in detecting
important signals from noise. It’s easy to be biased, however, since it’s often
hard to gauge how many improvements have been made. Measurements are
not about measuring perfection; they're about having fact-based feedback on
whether you're improving.

We tracked two metrics: lead time (including components) and percentage of
concepts that reached the Popular stage versus the Oh Crap! stage. If we
improved time to market, we would get feedback on flow. The metrics would
also show how the teams were doing on delivering value. These measurements
would give us feedback on flow (if we improved time to market) and how we
were doing on delivering value.

Lead-time measurement starts when the product idea enters WIP (the Next
column for us) and stops when the customer can use it (the Ready to Use
column). The reason for selecting these boundaries is because they are under
our control. So extraneous actions such as how quickly the client actually
accessed and used the product are less likely to cause noise in our data.

Product | Next Ready for Dev System Production Acc Ready| Cust.
ideas [3] dev[1] [51 test test | to use| usage

In prog. Done Data Graphics Portal Cust. Ready Testing| Release Custom Popular
service or ready for adapt.

test prod.

Oh crap!

; Lead time :

Once a month, the manager of the IT department (our Kanban board owner)
pulled together one representative from each development team for an
improvement pulse or a quick retrospective, in front of the Kanban board. The

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

How the Process Worked ® 21

agenda for these was very simple. The manager would review metrics (lead
time and customer usage feedback), review the board (is it clear, easy to view,
and useful?), and make necessary changes to the board. The meetings let
managers take the pulse of the team and were typically very quick—about
15 minutes—with changes to the board made immediately.

The improvement pulse may change things such as the templates being used
for the Kanban cards, refine lead-time metrics, or even insert/remove/reinsert
swim lanes (the horizontal rows) on the board.

Team issues or major blockers were rarely discussed during the monthly
improvement pulse. Why? Because they had already been addressed. If a
team or a product idea got blocked for some reason (such as performance
issues or release issues), the issues would have already received attention
and would have been addressed. Thus, we rarely had to spend time discussing
fixing blocking issues at our monthly improvement pulse.

Act and Share Information

We complemented the metrics we collected with several visual indicators,
such as blocking events, queues, age of product ideas, and estimates of where
the team put the most effort. These indicators helped management and teams
discuss and take action while the information and the corresponding chain
of events were still fresh in people’s minds. Trying to resolve the problem a
month later would have been a challenge because it would've been much
harder to recall the chain of events.

We estimated how much effort each team spent and presented that information
in a small section at the top of the Kanban board. You can see the area of the
board highlighted in the figure on page 22.

Each team updated and reviewed this section in the presence of the IT man-
agers during the monthly retrospective. As shown in the following figure, each
team changed the size of the columns for each category to show their effort
allocation. If there was a big discrepancy between the team’s estimates and
the target figure, the IT manager could ask about possible causes and deter-
mine what potential actions should be taken.

The visualization was a remarkably simple mechanism that let us track
extraordinary events as well situations where teams were pushed in the wrong
direction (for political or personal reasons). This mechanism replaced time
reporting as a tool to learn where the team spent time.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise © 22

What Lessons We Learned

We learned a number of lessons during this process. We improved inflow
quality, found our time to market, located our first improvement opportunity,
stopped doing late changes, and improved lead time by a factor of 2. Let’s
look at each lesson in detail.

Improve Product Ideas

In the beginning, we kept prospective new product ideas on a wall next to the
Kanban board. Because each product idea was presented as an A3 card, we
pinned the promising prospects next to the Kanban board.

The first time I reviewed these prospective new product ideas, I noticed that
40 percent of them did not have answers to the key questions, which would
be essential to have a meaningful conversation with the development team.
For example, impact was often missing. As we discussed earlier, concept
owners must be prepared to discuss the details with developers before the
concept owners can start working on the idea.

To fix this, the software team leads were given the authority to request that
concept owners supply the missing information. Once we did this, we noticed
a small but important behavior change—for the first time, the teams saw that
they could ask for quality input, much in the same way concept owners

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

What Lessons We Learned ® 23

expected product features to work the first time they tested them. This helped
emphasize that we were serious about the quality-first mindset.

While it would be unreasonable to expect that every product idea would be
prepared to perfection this early in the learning process, you can’t help but
wonder what would have happened if we had tried to develop and release
those product ideas.

How We Found Our Time to Market

To answer the age-old question of “When can I get my stuff?” we sampled the
lead time for released products and figured out where the 95th percentile
was. This is often referred to as the upper control limit (UCL).

The following figure shows our first sampling of the delivery times for new
product ideas. Each bar represents a delivered product idea, and the vertical
scale shows the number of days it took for the product idea to become a
shipped product (lead time). A UCL of 105 means 95 out of 100 product ideas
would get delivered within 105 days.

160

__ UCL 105

it~

9. A0 11 12 130 14 15 16 17 18 19 200 21 122 23) 24 25 26

This helped marketing manage client expectations and know when to begin
preparations for a new product if they wanted to hit a certain timeframe or
season.

I frequently hear the argument for needing upfront estimates because some
items are bigger than others. That’s very true—some items are indeed bigger.
If you look at the chart again, you will see that some bars are taller than
others, meaning they took a longer time to deliver. The interesting question
here is how the actual delivery times correlate to developers’ upfront estimates.

To help answer this, we had developers estimate sizes using the following
buckets: small (two to three days), medium (one to three weeks), and large
(longer than one month). We then correlated the initial sizing estimates with
lead-time output.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise © 24

Take a look. Is the initial sizing a good predictor of when you can expect to
get your stuff?

Estimation vs. lead time
160

140

120

Small

m Medium
H Large

In our case, the surprising truth was a resounding “no!” Judging by the data
in the chart, we can argue that there was really only one estimation bucket
(or two, depending on whether you see the longest data point as a random
event).

If size wasn’t the dominant factor in lead time, what was? In our case there
were two factors: the wait time for release and the wait time to get access to
specialized skills.

We found out later, after we’d successfully decreased waiting time, that there
was some correlation between size and lead time. But we couldn’t see that
until we’d addressed the wait time first. If your team’s work makes up only
a small part of the total value stream, then your estimates will likely be poor
indicators of when you can get your product.

A UCL essentially means that the majority of normal events are expected to occur
below this limit. It reflects the degree of certainty for predictions. You can choose to
be 95 percent certain (20), 68 percent certain (), or 50 percent certain (average, not
recommended). As a rule of thumb, I select UCL at 20, under which 95 percent of
events are expected to occur.

ucL

Distribution around

h __’>|___-_|_|___|_|_|_-__AVErage

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

What Lessons We Learned ¢ 25

A way to visualize UCL is to imagine a frequency distribution centered around the
mean. The farther away from the mean we move, the fewer occurrences we can expect
to find. Thus, UCL represents a cutoff point of the tail of the distribution.

There are statistical ways to calculate the UCL, which I won'’t get into here. And there
are hacks to estimate your UCL. Make a chart like the one above, with one bar for
each lead-time observation. Draw a line across the top of the bars, skimming above
the majority of them but cutting across one or two. The level of certainty that you
will hit this number is roughly equal to:

Number of bars above the line / Total number of bars

This is a rough and crude way to hack it, but it does give you a good enough
approximation, especially if you are under time pressure, have little data, and need
to make a call quickly.

How We Located Our First Improvement Opportunity

Kanban makes it very easy to identify bottlenecks. We simply look for piles
of tickets waiting. We didn’t see a queue as clearly, though. One reason was
that we had WIP limits across the board. The challenge was to understand
where the opportunities for improvements might be. So we tracked the key
components of lead-time data to see whether we could identify opportunities
for improvement. Let’s take a look at what the following figure can tell us.

Analyzing lead-time components
70

60

50

40 O Test to prod
W Dev to test
30 | Dev time

20

So where should we start improving? We were leaning toward “test to produc-
tion” as our biggest improvement area, but there were few data points, and

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise ® 26

the data was not terribly conclusive. We walked over to the change manage-
ment team—the team in charge of system testing and production updates—to
ask their opinion of the situation. They were swamped with work, and we had
found our bottleneck!

We are constantly stressed. I wish there were more

Late changes in the release
are killing us.

Change management was a team of nine people responsible for rolling out
changes in 70-plus systems, ranging from 1970s technologies to modern
ones. They had a lot to do.

The change management team had already begun taking steps to improve
their situation. We decided to tackle the problem together with them on three
fronts. First, we introduced Kanban in change management to help them
prioritize their workload, gain time to get the quality right, decrease stress,
and foster teamwork. Second, we stopped doing late changes to releases. We
struck an agreement between development, change management, and mar-
keting about the cutoff time for changes to releases and made sure everyone
stuck to it. And finally, we engaged developers to add automated test scenarios
to our system test environment. This simplified testing and, more importantly,
tested feedback.

How We Stopped Late Changes

We had several examples of late changes pushed in very late during the release
cycle, which made it hard to complete our system testing. We backtracked
through the quality efforts required and concluded that this usually happens
one week before the release. That was the time required to complete our key
system tests.

When we looked at previous releases, system testing was often only partially
complete. There were several reasons for this: market and time pressure, as

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

What Lessons We Learned ® 27

well as late changes and the difficulty for the person accepting/rejecting a
late change to overview the current status of the release.

We needed to find a way to change our behavior, to build quality in instead
of pushing quality out.

To address this, we added a timeline at the far end of the Kanban board for
all the development teams involved. This included the cutoff time for changes
to releases. And we asked the change management team to update this for
us for each release.

You may be wondering, “Didn’t you have a process before?” Yes, we had a
very hefty and well-documented process, dictating how and when things
should happen. The process stated that no change could happen as late as
four weeks before the release.

But advances in technology and different risk profiles for systems made people
realize that some late changes were not as risky as others. Just because a
process is well documented does not mean that it describes how things really
happen. This is one of the upsides of Kanban: by demonstrating how work
happens, right now, your interventions are more likely to target real problems.

Basing improvement decisions on documented processes is not a good idea
because it is a flawed premise based on flawed assumptions—namely, that
documents reflect how work really happens and that they provide fact-based
guidance to your biggest improvement opportunity.

A well-documented process is unlikely to show how things really happen.
Software development moves fast. If it is perfectly documented, it is probably
already outdated. A better way is to base improvements on firsthand observa-
tions from people doing the work. Start by asking, “What could be made better
or simpler?” Then validate by asking for real-life examples. Finally, use data
over time to see whether the observed event is repetitive or a random event.

As we got more data, we saw that we could shave off a big chunk of the lead
time if teams could release themselves; more precisely, if they could exempt
themselves from the monthly release window. There are some advantages to
this, such as the fact that we would virtually eliminate waiting time for system

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise © 28

testing. Smaller releases mean that it would be easier to identify causes for
quality problems.

It would also remove the delay aggregation effect—such as what happens
when a one-day delay near the release window turns into a four-week delay
because of the monthly release window. If teams could release themselves
and step out of the monthly release window, a one-day delay would be just
a one-day delay.

Making this change may sound simple in theory, but it proved difficult in
practice. The conversation between teams derailed quickly.

Let’s take a look at a typical conversation between development and change
management:

Okay, does that mean
you take on full release

We would like

to release ourselves.

responsibility, including
24/7 support?

®
N

Ahem.. no way..

And this was the typical conversation between development and the system
admin:

You mean root
access to all our

Can we get access
to more than dev environments

to support releases?

production servers??

o &

Dev Sys admin

Ahem.. no way..

It was ironic, to say the least. We had a fact-based improvement idea, but no
one wanted it. The problem was that our first approach was too blunt. It drove

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

What Lessons We Learned ® 29

the involved parties to expect the worst and ignore the positive effects of our
idea.

The Importance of Communication

The importance of the role of communication during change cannot

be overemphasized. Keep this as a rule of thumb: a change should

never come as a surprise. When change happens across multiple
0 functions, you cannot leave communication to chance. Verify if

and how the message got through. Use examples to drive home

your point. Avoid abstract terminology, because it could invite

reinterpretations of your message.

After failing with our first approach, we changed tactics. We broke the idea
into small, concrete steps that could be taken one at a time.

First, we let change management prepare a release checklist for all important
steps necessary to move a release to production with high quality. This
explicit checklist was shared with all development teams involved and helped
clarify expectations of release work.

Then, we added new roles with different access rights to test and production
environments. This let developers perform simple forms of deployments and
error investigations.

We also differentiated risk profiles. We decided it was okay to release at will
for systems with few dependencies and good test coverage. We continued to
release under the normal release window for systems with many dependencies
and low test coverage.

Finally, we freed up time so that change management staff could spend 50
percent of their time working directly with the development teams to mitigate
quality problems earlier in the development cycle.

We moved through each step one at a time. It might not seem like a big deal
that we finally got to a point where the development team was able to release
outside the normal release window, but this would have been inconceivable
two years prior.

How Lead Time Improved

Did we improve? That’s the most important question. All these changes don’t
matter if we don’t have improvements we can point to. Let’s look at some
data, starting with lead time for released products.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise ® 30

350

300

250

200

150

50

Lead time for new products

As you can see in the graph, lead time is trending downward over time, so
efforts to reduce our time to market seemed to be paying off. You can get a
better feel for this in the following graph, which looks at lead time for released
products by quarter.

160

140

120

100

80

60

40

20

N
x

K->

I I T

jull2-sept12 octl12-dec12 jan13-mar13

Waiting for cust. usage
" Package
W Sys test
M Dev
B Waiting for dev

Products released through Q1 2013 got shipped roughly two times faster than
in Q3 2012. This was great news, but we needed to know where our
improvements came from. The following graph breaks down lead time into
waiting time and value-adding time.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

What Lessons We Learned ® 31

Average time product idea spends waiting
70

60

50

40 Waiting for cust. usage
m Waiting for test

30
W Waiting for dev

20

10

0 T T 1

jul12-sep12 okt12-dec12 jan13-mar13

As you can see, the waiting time dropped, roughly by a factor of two. And you
can see the same pattern for value-adding time separated into development
and system testing in the following graph.

Average value adding time
100

90 -+

80

70 +

60 -

50 - M Test time
40 4 m Dev time
30 +

20

10 +

0 T |

jull2-sep12 okt12-dec12 jan13-mar13

Several factors contributed to the drop in waiting time and value-adding time,
including focus on flow, less rework, the ability to release when ready, and a
better understanding of the technology being used. Less rework is related to
better-prepared inflow, earlier validation, better test coverage, and the ability
to mitigate the impact of late changes. The biggest change was in time through
system testing, which we reduced by a factor of 7.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise ¢ 32

Just as we wanted to make sure we
were actually improving, we wanted
to make sure we were shipping things
that had wvalue to the cus-
tomer—things that could actually be
sold. The pie chart shows how we
performed in this regard.

3%\ 2%

® Happy! (customer + us)
Dev rework
u Customer rework

We learned about value by asking
customers and end users after a
release whether they were happy with
the delivery. As you may recall, we recorded the results at the end of the
Kanban board under two sections: Popular and Oh Crap! There were two
different ways something could fall into the Oh Crap! category: either the
customer rejected our delivery (customer rework) or we didn’t ship the product
because we weren't happy with it (dev rework).

Have a Feedback Loop
While we're still learning the discipline of collecting this data (it's
6 easy to forget to call back after first usage), our data does not prove

our hypothesis that we were capable of shipping things of value.
But what’s important is that we now have a feedback loop in place
to learn from.

Comparing Now and Before

The numbers tell a story, but we wanted to make sure that the people them-
selves felt as if things had changed. As you may remember, there was origi-
nally a sense throughout Company H that improvements had stalled. Were
people feeling better about the changes at Company H?

The following figure illustrates how people perceived communication at
Company H before Enterprise Kanban. Communication revolved around
completion of required process artifacts as defined by the individual function.
Holistic feedback was returned late, either at system testing or when the
complete product was in production. Sprint commitments were geared toward
subsystem changes. The quality of the final product and the progress of
product ideas were hard to grasp.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Comparing Now and Before ¢ 33

Communication
<ask for <ask for

process process

by @ artifact> artifact>
S fthiach
- = —,

Flow
2 N
N
> > o, ——
. K] 32
Marketing O Development () Release

The following figure shows how the changes resulted in a dramatically different
situation. Today, we have the first feedback on customer value (if we under-
stand and can communicate it) before the product idea is shared with devel-
opment. Validation of product fit—understanding whether the solution meets
most prioritized expectations—happens continuously.

Teams & communication

: N
- >
<product i Marketing V\N\]\/\/\/V\
<product WM/W fit> ! ‘ >
fit> - I
\5 ' Development \N\[\J\/\/\/\/\

@ o : 4_JReIease

<early product
itz feedback>

Today, conversations tend to be focused on what value we want to create and
what problem we need to solve. Progress happens when the quality, not the
time, tells you when a product is ready. While the basic organizational
structure hasn’t changed (we are still organized in multiple teams and in
functions), both behaviors and conversations have shifted dramatically. The
people involved will tell you when something is ready to move forward. And
we trust them to make that call.

“We talk a lot about customer need and the value we want to create today.”
- Manager

We managed to reach a 2x improvement in lead time over a period of 18
months. Kanban didn’t make this happen; the people who worked on the
projects did, along with their managers. What Kanban helped us do was to

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

Chapter 2. Using Kanban in the Enterprise ® 34

make visible how things really work so that our processes can be adapted on
the fly.

It’s also interesting to note what we didn’t do. We didn’t improve by marking
ourselves against a certain process method (for example, “How Agile are you?”)
or organizational model. We looked at real observations from our end-to-end
flow to decide what to improve on next. And we stuck with it until it was done.

The tricky parts were dismantling old processes and routines as we discovered
better ways to do things.

Make Your Own Improvements

You may find yourself in a similar situation where you want to improve your
workflow end to end. Or you may want to apply some of the things we've just
discussed to change how your department functions. As I've just mentioned,
the challenge was in dismantling old processes and routines as we discovered
better ways to do things. I have some advice to help you overcome these
challenges:

1. Visualize the whole value stream. Engage management in improving end
to end, not just a small part. It's when we see the entire customer journey
that we can unlock the greatest potential.

2. Try making changes by applying small experiments. Everything is new
the first time. If your first idea falls flat, try something smaller, but don’t
postpone the journey. Run small experiments to learn whether they work.

3. Talk about a change. Listen. And talk. Treat people as thinking beings
and suggest better options. It is possible to change old routines and habits
even across organizational borders if you persist in talking about them
for long enough. The greatest form of respect is to help someone evolve.

Next steps

Now that we have seen how it is possible to improve a complete value chain,
let’s take a look at how to solve a bottleneck under heavy pressure. How can
you improve life (for starters: keep your nose above water) for a small team
handing 350+ systems across multiple tech stacks? Let’s hear the story from
the Change Management team.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mskanban2
http://forums.pragprog.com/forums/mskanban2

