
Extracted from:

Raspberry Pi: A Quick-Start Guide,
2nd Edition

This PDF file contains pages extracted from Raspberry Pi: A Quick-Start Guide,
2nd Edition, published by the Pragmatic Bookshelf. For more information or to

purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Raspberry Pi: A Quick-Start Guide,
2nd Edition

Maik Schmidt

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Cathleen Small (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93778-580-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2014

http://pragprog.com
rights@pragprog.com

Detect Motion with the Pi
Chances are good that you benefit from motion detectors several times a week
or even several times a day. They might turn on the lights automatically at
dark, or perhaps they turn on the lights when you enter the restroom at work.
In this section, you’ll learn how these detectors work, and you’ll learn how to
turn the Pi into a motion detector.

Connect the PIR Sensor to the Pi
Many motion detectors use passive infrared (PIR) sensors.2 A PIR sensor
permanently measures infrared light and notices whenever something in the
infrared spectrum changes. This is all you need to detect motion, because
nearly every object emits infrared light. That’s true for everything in front of
your house: the ground, a bicycle, a garbage can, and so on. All of these
things emit a fairly constant portion of infrared light, and it doesn’t change
rapidly. But if a human being or an animal approaches your front door, the
sensor will notice a big variation and fire a signal.

The innards of PIR sensors are rather complex, but using them is easy. In
the following figure, you can see the Parallax PIR sensor (Rev A) that we’ll use
in this section’s examples. The sensor has a jumper you can use for changing
its behavior. Make sure it’s in position H; that is, the jumper covers the pin
next to the H.3

Figure 52—Top and bottom of a passive infrared sensor

2. http://en.wikipedia.org/wiki/Passive_infrared_sensor
3. At http://www.ladyada.net/learn/sensors/pir.html, you’ll find an excellent tutorial explaining all

the sensor’s details.

• Click HERE to purchase this book now. discuss

http://en.wikipedia.org/wiki/Passive_infrared_sensor
http://www.ladyada.net/learn/sensors/pir.html
http://pragprog.com/titles/msraspi2
http://forums.pragprog.com/forums/msraspi2

Also, the sensor has three pins that you need to connect to the Pi using
female/male jumper wires. In the following figure, you can see how. Connect
the Pi’s 5V pin to the sensor’s power pin and the Pi’s ground pin to the sensor’s
ground pin. Finally, connect the sensor’s signal pin to pin GPIO23 on the Pi.
Usually, the pins on the sensor are labeled. When in doubt, look at the sensor’s
data sheet.

Figure 53—The PIR circuit

All digital PIR sensors work more or less the same way. As long as they don’t
detect motion, they don’t output any current on their signal pin. When they
detect motion, they output a high signal—that is, a certain current that you
can usually look up in the sensor’s data sheet.

WARNING AGAIN! Never attach a sensor that outputs more than 3.3V
directly to the Pi. It will damage your Pi!

Control a PIR Sensor
Now that the wiring is finished, we have to control the sensor using some
software. For many programming tasks on the Pi, the Python programming

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/msraspi2
http://forums.pragprog.com/forums/msraspi2

language4 is a good choice. It’s easy to learn, and the RPi library5 has many
convenient functions for controlling the Pi’s GPIO pins. Raspbian already
comes with Python, but you have to install RPi:

pi@raspberry:~$ sudo apt-get update
pi@raspberry:~$ sudo apt-get install python-dev python-rpi.gpio

That’s all the preparation we need, and now we can define a new Python class
for working with a PIR sensor:

Sensors/pir.py
import RPi.GPIO as GPIOLine 1

class PassiveInfraredSensor:2

def __init__(self, pin):3

self.pin = pin4

GPIO.setmode(GPIO.BCM)5

GPIO.setup(self.pin, GPIO.IN)6

7

def motion_detected(self):8

return GPIO.input(self.pin)9

Even if you’ve never worked with Python before, you should be able to
understand most of the code. Before we dissect the code line by line, you
should know that Python treats whitespace differently from most other pro-
gramming languages. Instead of creating code blocks using curly braces ({ })
or keywords such as begin and end, Python uses indentation. It doesn’t matter
whether you use spaces or tabs to indent a block of code, but you have to be
consistent. That is, if you’ve indented the first line of a block using four spaces,
you have to indent the next line using four spaces, too.

In the first line we import RPi’s GPIO functions, so we can use them in our
own code. Then we define a new class named PassiveInfraredSensor. Whenever
we create a new PassiveInfraredSensor object, Python will call the _ _init_ _() function.
This function expects two arguments: the newly created object (self) and the
number of the pin to which we’ve connected the sensor (pin). Python will ini-
tialize the first argument automatically.

In line 4, we store the pin number in the current object, and after that we set
the numbering scheme for the pins using the GPIO.setmode() function. We pass
it the value GPIO.BCM, so the RPi library interprets pin numbers using the
Broadcom definition. (See the top and bottom rows in Figure 46, The Pi's GPIO
pins, on page ?.) In our case, the pin number is 23 because we have
connected the sensor’s signal pin to pin GPIO23 on the Pi.

4. http://www.python.org/
5. http://code.google.com/p/raspberry-gpio-python/

• Click HERE to purchase this book now. discuss

Detect Motion with the Pi • 7

http://media.pragprog.com/titles/msraspi2/code/Sensors/pir.py
http://www.python.org/
http://code.google.com/p/raspberry-gpio-python/
http://pragprog.com/titles/msraspi2
http://forums.pragprog.com/forums/msraspi2

Alternatively, we can set the mode to GPIO.BOARD. In this case, RPi interprets
pin numbers as they are defined on the Raspberry Pi board, and we’d have
to use 16 instead with our current setup. (See the two rows in Figure 46, The
Pi's GPIO pins, on page ?, beginning with Pin.) Finally, we turn the pin to
which the sensor is connected into an input pin by calling GPIO.setup() in line 6.

Then we define a method named motion_detected(). It calls GPIO.input(), passing it
our signal pin number. Depending on the method call’s result, it returns True
if the sensor has detected a motion and False otherwise. Again, Python sets
the self argument automatically for us.

Our PassiveInfraredSensor class is complete now, so let’s use it to build a motion
detector. The following program periodically checks whether the PIR sensor
has detected motion. It prints a message if someone moves, and it also prints
a message if nobody has moved for more than two seconds.

Sensors/pir_demo.py
from pir import *Line 1

import time-

-

PIR_PIN = 23-

pir = PassiveInfraredSensor(PIR_PIN)5

-

last_state = False-

while True:-

if (pir.motion_detected() == True):-

if (last_state == False):10

print "Movement detected"-

last_state = True-

else:-

if (last_state == True):-

print "No movement detected"15

time.sleep(2)-

last_state = False;-

In the first two lines, we import the PassiveInfraredSensor class and Python’s
functions for manipulating dates and times. Then we define a constant named
PIR_PIN and set it to the number of our signal pin. We use the constant in the
following line when we create a new PassiveInfraredSensor object for the first time.

The detection algorithm starts in line 7. We store the last state of the PIR
sensor in a variable named last_state. Then we start an endless loop and check
to see whether the PIR sensor has currently detected a motion. If yes, we
check whether this is a new motion or whether we have detected it before. If
it is new, we print the message “Movement detected.”

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/msraspi2/code/Sensors/pir_demo.py
http://pragprog.com/titles/msraspi2
http://forums.pragprog.com/forums/msraspi2

If the PIR sensor hasn’t detected a motion, we check whether it has previously
detected a motion. If it has, we print the message “No movement detected”
and wait for two seconds until we start again. Overall, we make sure that we
print a message only if the state has actually changed. This prevents our
motion detector from looking a bit nervous.

Now run the program, move a little in front of the PIR sensor, and stand still
from time to time.

pi@raspberry:~$ sudo python pir_demo.py
Movement detected
No movement detected

That’s all you need to turn the Pi into a motion detector. Printing a message
isn’t very spectacular, but you can easily improve the program so that it sends
an email or switches on a light. That way, you could turn your Pi into a burglar
alarm or make it the basis of a home-automation system.

Attaching most digital sensors to the Pi is easy as long as their output voltage
matches the Pi’s specifications and as long as they don’t depend on an accu-
rate timing. Working with analog sensors can be more complicated, but in
the next section you’ll see that it isn’t rocket science, either.

• Click HERE to purchase this book now. discuss

Detect Motion with the Pi • 9

http://pragprog.com/titles/msraspi2
http://forums.pragprog.com/forums/msraspi2

