
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com


CHAPTER 4

Recipes for Common Scenarios
You now know all about the options for getting data into and out of endpoints
for htmx applications. But we still have many patterns to explore.

Newcomers to htmx sometimes wonder if features they know how to implement
using other web frameworks can be easily implemented using htmx. The good
news is that I personally haven’t yet encountered any feature that I couldn’t
implement using htmx.

In this chapter, we explore a number of web app features and share htmx
solutions in cookbook style.

Inherited htmx Attributes

Many htmx attributes are inherited by descendant elements,
meaning they take on the same value for the attribute. Check the
official ihtmx reference1 for details.

For example, the documentation for the hx-boost attribute (described
next) says “hx-boost is inherited and can be placed on a parent
element.”

In the htmx documentation, whenever you see the term parent, it
really means ancestor. Likewise, child means descendant.

Boosting
For multipage web apps, you can improve the performance of loading new
pages by adding hx-boost="true" to the elements that load them. This can be
applied to a (anchor) and form elements (or their submit buttons). It only works
for pages at the same domain as the web app.

1. https://htmx.org/reference/

• Click  HERE  to purchase this book now.  discuss

https://htmx.org/reference/
http://pragprog.com/titles/mvhtmx
http://forums.pragprog.com/forums/mvhtmx


Boosting uses an AJAX request to obtain the content of the target page. The
contents of the target page body element replace the content of the current
body element. The only element inside the target page head element that’s
processed is the title element. The link elements (typically used to load CSS
files) and script elements (typically used to load JavaScript code) aren’t pro-
cessed, so boosting is only useful when all the CSS and JavaScript needed
by the target page have already been loaded by the current page.

When applied to an anchor tag, history is pushed and the URL in the browser
address bar is updated. This enables using the browser back button to return
to the previous page.

Let’s look at a simple example that demonstrates the effect of boosting an
anchor element. Here is the main page of the web app, containing two anchor
tags. The first doesn’t use hx-boost, but the second does.

<html>
<head>

<title>hx-boost Demo</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>

</head>
<body>

<a href="another.html">Without boost</a>
<a href="another.html" hx-boost="true">With boost</a>

</body>
</html>

When this page is loaded, the link and script tags are processed. The background
becomes light blue (see the following code sample), and the htmx library is
loaded.

The file styles.css that’s loaded by the main page contains the following CSS
rule:

body {
background-color: lightblue;
font-family: sans-serif;

}

Here’s the file another.html that’s referenced by both anchor tags. Note that the
head element contains link and script elements.

<html>
<head>

<title>Another Page</title>
<link rel="stylesheet" href="another.css" />
<script src="another.js"></script>

</head>

• 4

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/mvhtmx
http://forums.pragprog.com/forums/mvhtmx


<body>
<h1>Another Page</h1>

</body>
</html>

The file another.css that’s referenced by another.html contains the following CSS
rule:

body {
background-color: red;

}

Here’s the file another.js that’s referenced by another.html.

window.onload = () => {
alert('another.js was loaded.');

};

When the “Without boost” link on the main page is clicked, the another.html
page is loaded in the normal way. The link and style tags are processed, so the
alert in another.js is displayed, and the background changes to red.

When the With boost link on the main page is clicked, the another.html page is
loaded, but the link and style tags aren’t processed. The alert isn’t displayed and
the background remains light blue.

Lazy Loading
When displaying content that’s expensive to acquire, it’s useful to delay
requesting it until the rest of the page has loaded or until the part of the page
that will display it scrolls into view.

To wait to send a request until the page has loaded, use hx-trigger="load". To
wait until an element is scrolled into view, use hx-trigger="revealed", for example:

<table hx-get="/weather/forecast" hx-trigger="revealed"></table>

The following HTML contains a div element that appears near the bottom of
the page so it’s out of view when the page is first loaded. It uses hx-trigger=
"revealed" so a GET request to /users isn’t sent until the data is needed.

It also uses the hx-indicator attribute to specify an element to display while the
request is being processed. The CSS opacity property of the element starts at
0, changes to 1 when the request is sent, and changes back to 0 after the
response is received. A good choice for the element is a spinner GIF image.

The screenshot on page 6 shows what’s produced by the following HTML.

• Click  HERE  to purchase this book now.  discuss

Lazy Loading • 5

http://pragprog.com/titles/mvhtmx
http://forums.pragprog.com/forums/mvhtmx


Recipes/lazy-loading.html
<html>

<head>
<title>htmx Lazy Loading</title>
<link rel="stylesheet" href="styles.css" />
<script src="https://unpkg.com/htmx.org@2.0.0"></script>

</head>
<body>

<!-- Lots of content omitted. -->
<h2>Users</h2>
<div
hx-get="/users"
hx-indicator=".htmx-indicator"
hx-trigger="revealed"

/>
<img alt="loading" class="htmx-indicator" src="/spinner.gif" />

</body>
</html>

The server is defined by the following code. First, we import the things we
need from the Hono library, define a User type, and specify the URL for getting
fake users from the JSONPlaceholder API.2

Recipes/lazy-loading.tsx
import {type Context, Hono} from 'hono';
import {serveStatic} from 'hono/bun';

type User = {
id: number;

2. https://jsonplaceholder.typicode.com

• 6

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/mvhtmx/code/Recipes/lazy-loading.html
http://media.pragprog.com/titles/mvhtmx/code/Recipes/lazy-loading.tsx
https://jsonplaceholder.typicode.com
http://pragprog.com/titles/mvhtmx
http://forums.pragprog.com/forums/mvhtmx


name: string;
email: string;
company: {

name: string;
};

};

const URL = 'https://jsonplaceholder.typicode.com/users';

Next, we create a Hono server instance and configure it to serve static files
from the public directory, which includes index.html and styles.css.

Recipes/lazy-loading.tsx
const app = new Hono();

app.use('/*', serveStatic({root: './public'}));

Finally, we define the GET /users endpoint. This fetches user data and returns
it in an HTML table. This table is added as the innerHTML of the div element that
triggered the request.

Recipes/lazy-loading.tsx
app.get('/users', async (c: Context) => {

Bun.sleepSync(1000); // simulates long-running query
const res = await fetch(URL);
const users = await res.json();
return c.html(

<table>
<thead>

<tr>
<th>ID</th>
<th>Name</th>
<th>Email</th>
<th>Company</th>

</tr>
</thead>
<tbody>

{users.map((user: User) => (
<tr>
<td>{user.id}</td>
<td>{user.name}</td>
<td>{user.email}</td>
<td>{user.company.name}</td>

</tr>
))}

</tbody>
</table>

);
});

export default app;

• Click  HERE  to purchase this book now.  discuss

Lazy Loading • 7

http://media.pragprog.com/titles/mvhtmx/code/Recipes/lazy-loading.tsx
http://media.pragprog.com/titles/mvhtmx/code/Recipes/lazy-loading.tsx
http://pragprog.com/titles/mvhtmx
http://forums.pragprog.com/forums/mvhtmx


See the working example project at lazy-load.3

3. https://github.com/mvolkmann/htmx-examples/tree/main/lazy-load

• 8

• Click  HERE  to purchase this book now.  discuss

https://github.com/mvolkmann/htmx-examples/tree/main/lazy-load
http://pragprog.com/titles/mvhtmx
http://forums.pragprog.com/forums/mvhtmx

