
Extracted from:

Rails for PHP Developers

This PDF file contains pages extracted from Rails for PHP Developers, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

$_SERVER 378

we’ve created an uploads directory to hold all the file uploads in our

application.

PHP Download php_to_rails/php/files/file_upload.php

// destination for file

$destDir = dirname(__FILE__)."/uploads/";

$dest = $destDir.basename($_FILES['uploaded_file']['name']);

if (move_uploaded_file($_FILES['uploaded_file']['tmp_name'], $dest)) {

echo "File uploaded successfully.";

}

Ruby Download php_to_rails/ruby/demo_1/app/models/document.rb

before_save :write_file_upload

def write_file_upload

dest = "#{RAILS_ROOT}/uploads/#{self.filename}"

File.open(dest, 'w') {|f| f << @contents }

end

You’ll obviously want to perform some validation and error checking for

your file uploads just as you would in PHP. You would typically check

that the file size isn’t zero and that the uploaded file doesn’t already

exist on disk. Rick Olson has written a useful Rails plug-in that deals

with a lot of the issues you may run into while dealing with file uploads.

This plug-in is named attachment_fu and can be found in Rick’s SVN

Repository.1

13.4 $_SERVER

Most of the common environment variables you would get through the

$_SERVER superglobal array or getenv() function in PHP are set as meth-

ods on the request object in Rails. As shown in Figure 13.1, on the

following page, we can access these by referencing these methods from

within a controller action.

13.5 Cookies

Setting cookies in Rails is done by assigning a value to the cookies hash

within a controller action. We can also assign a hash of parameters to

the cookie if we need to specify the expiration date or path constraint.

1. http://svn.techno-weenie.net/projects/plugins/attachment_fu/

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/files/file_upload.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/models/document.rb
http://svn.techno-weenie.net/projects/plugins/attachment_fu/
http://www.pragprog.com/titles/ndphpr

COOKIES 379

Figure 13.1: Server variables

PHP Download php_to_rails/php/cookies/set_cookies.php

// expire at the finish of the current session

setcookie('tabState', 'open');

// set additional info for the cookie

setcookie("tabState", 'open', time()+3600*24*14, "/~foo/");

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

expire at the finish of the current session

cookies[:tab_state] = 'open'

set additional info for the cookie

cookies[:tab_state] = { :value => 'open',

:expires => 14.days.from_now,

:path => "/~foo/" }

end

We can retrieve cookies within a Rails controller by simply accessing the

value for the cookie from the cookies hash. Remember that this method

is not a superglobal such as the $_COOKIE array in PHP and is available

only when working in an action or view.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/cookies/set_cookies.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://www.pragprog.com/titles/ndphpr

SESSIONS 380

PHP Download php_to_rails/php/cookies/get_cookies.php

$state = isset($_COOKIE['tabState']) ? $_COOKIE['tabState'] : null;

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

state = cookies[:tab_state]

end

We delete cookies in PHP by setting an expiration date that has already

passed. In Rails, we delete a cookie using the delete method to our cook-

ies proxy object. Simply call this method with the name of the cookie you

want to wipe out.

PHP Download php_to_rails/php/cookies/delete_cookies.php

// one hour ago

setcookie("tabState", "", time() - 3600);

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

cookies.delete(:tab_state)

end

13.6 Sessions

Session data is set within controller methods by assigning values to the

session hash. There is no need for any equivalent of PHP’s session_start

function.

PHP Download php_to_rails/php/sessions/set_session.php

session_start();

$_SESSION['user'] = $user->id;

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

session[:user] = @user.id

end

We retrieve session data in Rails by accessing values of the session hash

by key name. This method is not a superglobal such as the $_SESSION

array in PHP and is available only when working in an action or view.

PHP Download php_to_rails/php/sessions/get_session.php

session_start();

$userId = isset($_SESSION['user']) ? $_SESSION['user'] : null;

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/cookies/get_cookies.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/cookies/delete_cookies.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/sessions/set_session.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/sessions/get_session.php
http://www.pragprog.com/titles/ndphpr

SESSIONS 381

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

user_id = session[:user]

end

We can clear all existing session data using the reset_session method,

which works similarly to PHP’s session_destroy function.

PHP Download php_to_rails/php/sessions/reset_session.php

session_destroy();

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

reset_session

end

There are various session storage options in Rails that can be changed

to suit your needs. The default session storage mechanism uses cook-

ies and is suitable for most needs. However, in some cases, you may

need to store more session data than allowed in a cookie (4KB). You

might also at times want to store sensitive information that you would

rather not have stored in a cookie. In these scenarios, you may want

to use ActiveRecord to store your sessions in the database. Turning

on :active_record_store can be done by uncommenting the session_store

assignment in the initializer block in config/environment.rb.

Ruby Download php_to_rails/ruby/demo_1/config/environment.rb

config.action_controller.session_store = :active_record_store

If we want to use Rails’ built-in cross-site request forgery protection, we

need to perform an additional step when switching the session store.

Any session store other than the default cookies storage requires us

to provide a :secret token to the protect_from_forgery method in app/

controllers/application.rb. This token is already generated in your source

code and just needs to be commented out to work with our active record

session storage.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/application.rb

protect_from_forgery :secret => 'ef992b27ee422f2e5b5e44bab9e6f7e0'

Once we’ve done this, we need to create the sessions migration to create

the database table needed to store our data. We can do this using a

Rake task bundled with Rails.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/sessions/reset_session.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/config/environment.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/application.rb
http://www.pragprog.com/titles/ndphpr

HEADERS AND REDIRECTION 382

From your application’s root directory, run the following:

demo> rake db:sessions:create

(in /Users/derek/work/demo)

exists db/migrate

create db/migrate/003_create_sessions.rb

Now we can use the new session migration to add this table to our

database:

demo> rake db:migrate

(in /Users/derek/work/demo)

== 3 CreateSessions: migrating ===

-- create_table(:sessions)

-> 0.0503s

-- add_index(:sessions, :session_id)

-> 0.0086s

-- add_index(:sessions, :updated_at)

-> 0.0559s

== 3 CreateSessions: migrated (0.1157s) ================================

Once we’ve restarted the server, sessions will now be stored in the ses-

sions table instead of the default cookie storage. If we ever want to clear

our active record session data, there is another Rake task to handle

this.

demo> rake db:sessions:clear

13.7 Headers and Redirection

We can send arbitrary headers in a controller method by assigning

header values on the response object. This works similarly to PHP’s

header function.

PHP Download php_to_rails/php/headers/headers.php

header('Cache-Control: no-cache, must-revalidate');

header('Content-Type: application/pdf');

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

response.headers['Cache-Control'] = 'no-cache, must-revalidate'

response.headers['Content-Type'] = 'application/pdf'

end

Rails provides a method in our controllers to set proper redirect headers

in our application. The redirect_to method uses a hash of parameters

that compose the redirection URL.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/headers/headers.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://www.pragprog.com/titles/ndphpr

SECURITY 383

PHP Download php_to_rails/php/headers/redirection.php

header("Location: /documents/new");

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

redirect_to(:controller => "documents", :action => "new")

end

This redirect_to method can also be given a string if the redirection URL

is outside the domain of the current application.

PHP Download php_to_rails/php/headers/redirection_external.php

header("Location: http://maintainable.com");

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

redirect_to('http://maintainable.com');

end

13.8 Security

There are various security concerns when developing Rails applica-

tions. Many of these you’ll be familiar with from encountering the same

issues in PHP. Others are unique to the conventions used in Rails.

Escape Output

You should always escape variables for output. This eliminates bugs

because of improperly escaped entities but more importantly alleviates

security concerns such as cross-site scripting attacks. The equivalent

of PHP’s htmlentities function in Rails is the h helper method. We can use

this method just like any other helper method, and a common usage

pattern is to leave off the parentheses when outputting a single variable

within the Ruby interpreter. In this case, the h method is placed at the

beginning of the tags used to open the Ruby interpreter such as <%=h.

PHP Download php_to_rails/php/security/escape_output.php

<div>

<a href="/documents/show/<?= $document->id ?>">

<?= htmlentities($document->filename, ENT_QUOTES) ?>

</div>

<div>

<?= htmlentities($document->contentType, ENT_QUOTES) ?>

</div>

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/headers/redirection.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/headers/redirection_external.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/security/escape_output.php
http://www.pragprog.com/titles/ndphpr

SECURITY 384

Ruby Download php_to_rails/ruby/demo_1/app/views/examples/escape_output.html.erb

<div>

<%= link_to h(@document.filename), :controller => "documents",

:action => "show",

:id => @document.id %>

</div>

<div><%=h @document.content_type %></div>

Filter Input

To avoid SQL Injection attacks in PHP, we always use a function such as

mysql_real_escape_string to escape quotes and other potentially danger-

ous characters within a SQL statement. Rails accomplishes the same

thing using replacement variables.

Any SQL fragment in our find statements can be stated as an array

instead of a string. The first element is a SQL string with question

marks as value placeholders. The rest of the array elements are val-

ues to be substituted into the string.

PHP Download php_to_rails/php/security/replacement_variables.php

mysql_connect('localhost', 'root', '');

$id = isset($_POST['id']) ? $_POST['id'] : null;

$name = isset($_POST['name']) ? $_POST['name'] : null;

$type = isset($_POST['type']) ? $_POST['type'] : null;

$query = sprintf("SELECT * FROM documents WHERE id='%s' LIMIT 1",

mysql_real_escape_string($id));

$query = sprintf("SELECT *
FROM documents

WHERE filename LIKE '%s'

AND content_type = '%s'",

mysql_real_escape_string("%$name%"),

mysql_real_escape_string($type));

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

id, name, type = params[:id], params[:name], params[:type]

condition fragment

doc = Document.find(:first,

:conditions => ["id = ?", id])

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/views/examples/escape_output.html.erb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/php/security/replacement_variables.php
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://www.pragprog.com/titles/ndphpr

SECURITY 385

sql query

docs = Document.find_by_sql(["SELECT *
FROM documents

WHERE filename LIKE ?

AND content_type = ?",

"%#{name}%", type])

end

def my_action

begin

@document = Document.find(params[:id])

rescue ActiveRecord::RecordNotFound

flash[:notice] = "Invalid document"

redirect_to :action => :index

end

end

def my_action

@document = Document.find_by_id(params[:id])

end

def my_action

deliver the message

NotificationMailer.deliver_confirm(@user)

end

def my_action

create, and deliver later

email = NotificationMailer.create_confirm(@user)

NotificationMailer.deliver(email)

end

def my_action

render

end

protected

def my_protected

this cannot be executed as an action

end

end

Protect Attributes from Bulk Assignment

A common pattern used in Rails during form submission is to group

together data for a particular object so that we can perform a bulk

assignment in our controller. For example, we might have a Comment

model such as the code on the next page.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ndphpr

SECURITY 386

Ruby Download php_to_rails/ruby/demo_1/db/migrate/004_create_comments.rb

class CreateComments < ActiveRecord::Migration

def self.up

create_table :comments do |t|

t.string :email

t.text :content

t.boolean :verified

t.timestamps

end

end

def self.down

drop_table :comments

end

end

Then the interface for a public form to create a comment might include

only the email and content attributes, while displaying only the verified

attribute for site administrators.

Ruby Download php_to_rails/ruby/demo_1/app/views/comments/new.html.erb

<form method="post" action="/comments/create">

<input type="text" name="comment[email]" />

<input type="text" name="comment[content]" />

<% if @user.admin? %>

<input type="text" name="comment[verified]" value="1" />

<% end %>

</form>

When the data for this is submitted, it will combine the data into a sin-

gle hash that we can assign in the controller when creating our object.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/comments_controller.rb

def create

@comment = Comment.new(params[:comment])

if @comment.save

flash[:notice] = 'Created successfully.'

redirect_to :action => "index"

else

render :action => "new"

end

end

The problem is that the verified attribute isn’t actually secured for the

model and is merely hidden from the view. There is nothing stopping

a user from submitting this attribute through some other means such

as curl, in which it would mark the comment as verified regardless of

whether the user is an administrator.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/db/migrate/004_create_comments.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/views/comments/new.html.erb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/comments_controller.rb
http://www.pragprog.com/titles/ndphpr

SECURITY 387

Download php_to_rails/ruby/attr_protected.sh

curl -d "comment[verified]=1" http://localhost:3000/comments/create

The solution for this is to mark this attribute as protected from bulk

assignment using the attr_protected method in our model.

Ruby Download php_to_rails/ruby/demo_1/app/models/comment.rb

class Comment < ActiveRecord::Base

attr_protected :verified

end

We can also use a white-list approach, instead using attr_accessible to

define the only attributes that are allowed during bulk assignment.

Ruby Download php_to_rails/ruby/demo_1/app/models/comment.rb

class Comment < ActiveRecord::Base

attr_accessible :email, :content

end

Once we’ve secured our models this way, we need to remember that we

now need to explicitly assign these attributes in our controller when

they are applicable.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/comments_controller.rb

@comment = Comment.new(params[:comment])

@comment.verified = params[:comment][:verified] if @user.admin?

Handle Missing Records

When we use the find method to load a record by primary key, it expects

that the ID given is valid. When the ID given cannot be found, an

ActiveRecord::RecordNotFound exception is raised. It is important to not

trust that IDs given in the application are valid. Many times it is as easy

as changing a number in a URL to throw an invalid ID into your action.

There are two ways of handling missing IDs. The first is to put your find

within a begin/rescue block. How you deal with an invalid ID depends

on the situation. Most of the time it is sufficient to simply redirect back

to the index view with a polite message.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

begin

@document = Document.find(params[:id])

rescue ActiveRecord::RecordNotFound

flash[:notice] = "Invalid document"

redirect_to :action => :index

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/attr_protected.sh
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/models/comment.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/models/comment.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/comments_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://www.pragprog.com/titles/ndphpr

DEBUGGING 388

If you’d rather the object simply be Nil when the record is not found,

you can use find_by_id instead of find. This usage is appropriate when

you expect that the ID could not exist, and the code can continue to

execute properly when the record is Nil.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

@document = Document.find_by_id(params[:id])

end

Nonaction Controller Methods

All methods in a controller are assumed to be public actions unless

stated otherwise. This means methods that were not intended to be

accessed can be typed in the URL and cause errors in your application.

The simplest way to prevent this is to give a protected visibility to any

methods not intended to be actions within the controller.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb

def my_action

render

end

protected

def my_protected

this cannot be executed as an action

end

13.9 Debugging

The most popular debugging strategy in PHP is done using strategically

placed print statements. Although there are certainly more sophisticated

debugging solution for PHP, simply printing variables to the screen is

usually pretty quick and efficient.

If you’ve tried to place print statements within your Rails controllers or

models, you’ve probably noticed that they don’t have any effect on the

output sent to the browser. This is because any output generated in

your Rails code has nothing to do with the data that Rails eventually

renders to the browser. We do, however, have a few alternate strategies

for debugging in Rails.

Logging Data

We’ll usually use the logger in Rails to do simple debugging. Log files

are written to the log/ directory in our application and are named based

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/examples_controller.rb
http://www.pragprog.com/titles/ndphpr

DEBUGGING 389

on the current environment we are using. We discuss environments

in more detail in Section 6.2, Using Rails Environments, on page 166.

When you are working in the development environment, a lot of use-

ful information is sent to the log automatically. This includes all the

SQL executed and the list of parameters sent with each request. Sim-

ply viewing the log might give you enough information without further

debugging.

Often you’ll need to send further data to the log to inspect the contents

of a variable. We can send data to the log using the logger.info method.

This will work in models, controllers, and views. When you are logging

objects, you’ll probably want to use their inspect method to get a more

useful output of their contents.

Ruby Download php_to_rails/ruby/demo_1/app/controllers/meetings_controller.rb

def create

@meeting = Meeting.new(params[:meeting])

logger.info(@meeting.inspect)

...

end

When we run this code, something similar to the following will be sent

to our log.

#<Meeting id: nil, meets_on: "2007-11-30", location: "The Library",

description: "Using OpenID", created_at: nil, updated_at: nil>

Interactive Debugging

Rails also has a sophisticated debugger based on the ruby-debug gem.

To use this debugger, first install ruby-debug using gem install:

my_app> gem install ruby-debug

Building native extensions. This could take a while...

Successfully installed ruby-debug-base-0.9.3

Successfully installed ruby-debug-0.9.3

2 gems installed

...

Once we’ve installed this required gem, we need to restart the server for

our application using the - -debugger option:

my_app> ruby script/server --debugger

=> Booting Mongrel (use 'script/server webrick' to force WEBrick)

=> Rails application starting on http://0.0.0.0:3000

=> Debugger enabled

...

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/controllers/meetings_controller.rb
http://www.pragprog.com/titles/ndphpr

ACCESSING THE DATABASE 390

Now in our application, we can initialize the debugger by placing debug-

ger somewhere in our application.

Ruby Download php_to_rails/ruby/demo_1/app/models/meeting.rb

formatted name based on date

def name

debugger

meets_on.to_s(:long)

end

When the application reaches this point, it will invoke the interactive

debugger.

/user_group/app/models/meeting.rb:23 meets_on.to_s(:long)

(rdb:5)

From here we can walk through the call stack and inspect our environ-

ment using various commands. To see a list of available commands,

type help.

(rdb:5) help

ruby-debug help v0.9.3

Type 'help "command-name"' for help on a specific command

Available commands:

backtrace break catch cont delete display down eval exit finish frame

help irb list method next p pp quit reload restart save script set

step thread tmate trace undisplay up var where

Follow the guidelines here for using the help command to get additional

information on the various commands. More detailed usage instruc-

tions can also be found on the Ruby-Debug website.2

13.10 Accessing the Database

We are quite familiar with writing SQL in PHP. While you are learn-

ing Rails, you may wonder how to query the database directly without

using ActiveRecord objects. The short answer is that it’s possible but

not a good idea. ActiveRecord uses callbacks hooks and validations

to ensure that the data entering the database adheres to the rules

assigned in our model classes. Accessing and querying the database

directly will circumvent all the logic we’ve added to the model layer of

our application.

2. http://www.datanoise.com/ruby-debug/

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ndphpr/code/php_to_rails/ruby/demo_1/app/models/meeting.rb
http://www.datanoise.com/ruby-debug/
http://www.pragprog.com/titles/ndphpr

ACCESSING THE DATABASE 391

With this in mind, there are sometimes performance reasons to bypass

validations and callbacks. To perform mass updates, we can use the

update_all method. The first argument is a SQL fragment with the up-

dates to apply, and the second argument is the conditions.

def update_admin_for_nyc

self.update_all("admin = 1", "location = 'NYC'")

end

We can perform a similar operation for mass deletions using the delete_

all method. This method takes a single argument with the conditions on

which to delete records.

def delete_from_tulsa

self.delete_all("location = 'Tulsa'")

end

Most SELECT-based query operations can (and should) be done using

the versatile find method. This method supports options such as :select,

:from, :group, :limit, :offset, and :conditions.

def find_archives

self.find(:all, :select => "id, name",

:from => "user_archives",

:conditions => "admin = 1",

:limit => 10,

:offset => 10)

end

If the find method is not capable of performing the query you need, you

can drop down to using the find_by_sql method to query. This method

works just like find(:all) but uses a complete SQL string.

def find_including_archives

sql = "SELECT * FROM users UNION SELECT * FROM user_archives"

self.find_by_sql(sql)

end

If you absolutely need to drop down to execute straight SQL, you can

do this within your models using the connection.execute method.

def swap_to_archive

connection.execute("INSERT INTO user_archives SELECT * from users")

end

Remember that using execute is usually a last resort. Do some research

first to find whether there is a better way to accomplish what you are

trying to do.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ndphpr

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Rails for PHP Developers Home Page

http://pragprog.com/titles/ndphpr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/ndphpr.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/ndphpr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/ndphpr
www.pragprog.com/catalog

	Contents
	Acknowledgments
	Preface
	What Rails Offers
	Who Should Read This Book
	Resources
	PHP and Rails: A Personal View
	About the Code Examples
	About the Environment Used
	Version Requirements
	How to Read This Book

	From PHP to Rails
	Getting Started with Rails
	Rails as an Extension of Ruby
	The Components of Rails
	Opinionated Software
	The MVC Pattern and Rails
	Installing Ruby and Rails
	Creating a Rails App
	Chapter Review
	Exercises

	Beginning Ruby Code
	Seeing Ruby as a General-Purpose Language
	Interacting with Ruby
	Objectifying Everything
	Accepting Ruby's Object World
	Assigning to Variables
	Writing Methods and Passing Parameters
	Controlling Program Flow
	Handling Errors
	Understanding Blocks
	Chapter Review
	Exercises

	Embracing the Ruby Philosophy
	Thinking in Objects
	Understanding Attributes
	Method Visibility
	Understanding Typing
	Implementing Interfaces with Mixins
	Organizing Code with Namespaces
	Overriding Operators
	Reopening Classes
	Chapter Review
	Exercises

	Building a Rails Application
	Modeling the Domain
	Defining Requirements
	Using the Database
	Creating the Application
	Generating the First Model
	Building Database Tables
	Employing ActiveRecord
	Chapter Review
	Exercises

	Working with Controllers and Views
	Identifying Resources
	Creating Controllers
	Routing Requests
	Retrieving Meeting Data
	Viewing Meetings
	Adding Links
	Creating New Meetings
	Redirection and Flash Data
	Administrating Meetings
	Separating Public Files
	Adding a Layout
	Chapter Review
	Exercises

	Validating and Testing Models
	Validating Model Data
	Using Rails Environments
	Testing Our Models
	Chapter Review
	Exercises

	Authenticating Users
	Migrating to a More Secure User
	User Registration
	Viewing and Editing Users
	Restoring Sessions
	Logging In
	Chapter Review
	Exercises

	Defining Associations
	Connecting Presentations
	Testing Associations
	Integrating Presentations into Meetings
	Routing Presentations
	The Presentation Controller
	Spring Cleaning
	Chapter Review
	Exercises

	Preparing to Launch
	Adding the Home Page
	Securing Our Actions
	Protecting from Mass Assignment
	Caching the Pages
	Chapter Review
	Exercises

	Deploying the Application
	Choosing a Host
	The Production Environment
	Preparing Our Application
	Preparing Our Deployment Server
	Launching the Application
	Enhancing Performance
	Scaling Your Application
	Chapter Review
	Exercises

	PHP to Ruby at a Glance
	PHP to Ruby Basics Reference
	Basic Syntax
	Basic Data Types
	Variables
	Constants
	Expressions
	Operators
	Control Structures

	PHP to Ruby Advanced Reference
	Blocks
	Functions
	Classes and Objects
	Exceptions
	References
	External Libraries and Packages
	Documenting Code

	PHP to Rails Reference
	Templates
	$_GET/$_POST
	$_FILES
	$_SERVER
	Cookies
	Sessions
	Headers and Redirection
	Security
	Debugging
	Accessing the Database
	Email
	Testing Rails Code
	Rails Plug-Ins

	*-.5Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

