
Extracted from:

Quantum Computing
Program Next-Gen Computers for Hard, Real-World Applications

This PDF file contains pages extracted from Quantum Computing, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Quantum Computing
Program Next-Gen Computers for Hard, Real-World Applications

Nihal Mehta, Ph.D.

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Brian MacDonald
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-720-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Your First Quantum Program
The way to program quantum computers differs from what you would do for
traditional computers. Although the quantum programming syntax borrows
from today’s computer languages, such as JavaScript, C#, or Python, the
underlying concepts are widely divergent. Objects such as JavaScript Promises
help us write organized and efficient code. But, under the hood, the machine
language instructions are pretty much the same as those, say, for FORTRAN
or BASIC. Quantum programming is different. The underlying hardware has
fundamentally changed. So, to write code that works on these machines, we
need to rethink the way we write computer programs.

Rather than introduce quantum computing on a “Hello World” program or
some other contrived example, we’ll jump right in and run a practical compu-
tational task on a quantum computer. This exercise will immediately show
you that this technology is real.

A Scheduling Problem
We’ll use a quantum computer to come up with a schedule for Las Vegas
shows. This scheduling task is a simpler version of a problem discussed in
Knuth’s The Art of Computer Programming [Knu11], Section 7.1.1. In our ver-
sion, we deal with contemporary performers but have retained the timeless
Las Vegas hotels.

Our job is to schedule three talk show hosts for a comedy festival over two
days at three hotels. We have to slot the shows based on the hotels that each
artist can perform at:

• Jimmy Kimmel performs only at Aladdin and Bellagio.
• Bill Maher performs only at Bellagio and Caesars.
• Trevor Noah performs only at Caesars and Aladdin.

For these kinds of problems, whether you write a program for a conventional
computer or a quantum one, you must first express them with logical con-
straints. Only then can you write a program to hunt for a valid solution.

For a vast range of applications, including these types of scheduling problems,
this form boils down to searching for a feasible solution to a system of Boolean
logic expressions. This way of modeling applications is referred to as the
Boolean Satisfiability (SAT)16 problem in computer science. Following Knuth,
we go through this analysis in the next section.

16. https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

• Click HERE to purchase this book now. discuss

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://pragprog.com/titles/nmquantum
http://forums.pragprog.com/forums/nmquantum

Joe asks:

What Makes a Problem Hard?
Since the quantum equivalents of the binary bits and gates work differently in the
quantum world, not every application is suitable for quantum computers. For example,
quantum computers aren’t used to verify whether an email address is correctly filled
out in an HTML form or for transactional applications, such as putting information
into a database or streaming video to a browser. Rather, quantum computers are
ideally suited where a computer has to crunch through a large number of possible
solutions of computational tasks.

Such a problem will allow you to see quantum effects in play and will drive home the
point that quantum phenomena can fruitfully be put to use in common computational
applications and not merely reserved for esoteric and highly idealized cases. The
scheduling problem has several candidate solutions, as well as features that allow
you to exercise many quantum principles, yet is simple enough to understand the
solution space without getting overwhelmed with details.

Modeling Boolean Logic Expressions

Setting up the Boolean logic expressions for computational prob-
lems is more art than science. For many problems, there are sev-
eral acceptable ways to model them. Knuth’s book is a great
resource to get an overall flavor on this way of modeling.

Writing a System of Boolean Logic Expressions
To write a quantum program for this scheduling problem, we model it using
a system of Boolean logic expressions. Start by defining three Boolean variables
k,m,n as follows:

• k means that Jimmy Kimmel does Bellagio on Day 1 and Aladdin on Day
2; k-bar or k‾ means that Kimmel does them in opposite order: Aladdin on
Day 1 and Bellagio on Day 2.

• m means that Bill Maher does Bellagio on Day 1 and Caesars on Day 2;
m-bar or m‾ means that Maher does them in opposite order: Caesars on
Day 1 and Bellagio on Day 2.

• n means that Trevor Noah does Aladdin on Day 1 and Caesars on Day 2;
n-bar or n‾ means that Noah does them in opposite order: Caesars on Day
1 and Aladdin on Day 2.

Next, we set up Boolean logic expressions that ensure that no two artists are
slated at the same hotel on the same day—the conflict constraints. For

• 2

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nmquantum
http://forums.pragprog.com/forums/nmquantum

example, on Day 1 at Aladdin, Kimmel and Noah cannot perform at the same
time. This restriction results in the following logic expression:

• Aladdin on Day 1: ⌐ (k‾ ∧ n) = k ∨ n‾
The symbol ∧ stands for the Logical AND, ∨ for Logical OR, and ⌐ is Logical
NOT.

Thus, the left-hand side of the first relation, for example, states that Kimmel
performing at Aladdin on Day 1 (k‾), and Noah at Aladdin on Day 1 (n),
expressed as (k‾ ∧ n), cannot be true at the same time: ⌐ (k‾ ∧ n). That is, both
can’t perform at Aladdin on the same day. The right-hand side is its simplifi-
cation via De Morgan’s rule (see Boolean Logic Expressions, on page ?).

Similarly, we can define the logic expressions for the other slots:

• Aladdin on Day 2: ⌐ (k ∧ n‾) = k‾ ∨ n

• Bellagio on Day 1: ⌐ (k ∧ m) = k‾ ∨ m‾
• Bellagio on Day 2: ⌐ (k‾ ∧ m‾) = k ∨ m

• Caesars on Day 1: ⌐ (m‾ ∧ n‾) = m ∨ n

• Caesars on Day 2: ⌐ (m ∧ n) = m‾ ∨ n‾

• Click HERE to purchase this book now. discuss

Your First Quantum Program • 3

http://pragprog.com/titles/nmquantum
http://forums.pragprog.com/forums/nmquantum

For a valid schedule, all these logic expressions must be true. That is,

(k ∨ n‾) ∧ (k‾ ∨ n) ∧ (k‾ ∨ m‾) ∧ (k ∨ m) ∧ (m ∨ n) ∧ (m‾ ∨ n‾) = 1

In general, unless there are specialized techniques for a specific class of
Boolean logic expressions, the only way to find a valid set of Boolean variables
is go through each combination one at a time.

Single Letter Variables

Although you’ll prefer using more suggestive variable names in
your programs, I’ll use single-letter variables so that they’re easier
to relate back to the Boolean logic expressions.

In subsequent chapters, you’ll learn how quantum mechanical principles
come together to get a feasible schedule for the performers at the Vegas hotels
by only scanning a fraction of the combinations.

In the next section, you’ll get a rapid-fire overview of how this search is done
on a quantum computer. We’ll explain in detail in subsequent chapters.

Running on a Quantum Computer
I selected the IBM Q Experience,17 a cloud service to run quantum computers,
for all the code examples in this book because it requires minimal setup,
making it ideal to learn this new technology—there are no installation or
connectivity battles to overcome before you can use a quantum computer.
All you need is a web browser and an internet connection. You can also use
the material in this book with Microsoft’s or Amazon’s quantum computer—it’s
much the same as what you’ll see here. We’re just using the IBM computer
because we have to pick one.

To write and run your programs on the IBM Q Experience, which we’ll also
refer to as the IBM Quantum Computer, you’ll need to first set up an account.
You can sign up in one of two ways:

• Get a free IBMid account from https://quantum-computing.ibm.com/login.
• Use your Google, Twitter, LinkedIn, or GitHub account.

Later, in Chapter 11, Where to Go from Here, on page ?, you’ll see how to
invoke the IBM Quantum Computer from within your own applications using
an API Token.

17. https://www.research.ibm.com/ibm-q/technology/experience

• 4

• Click HERE to purchase this book now. discuss

https://quantum-computing.ibm.com/login
https://www.research.ibm.com/ibm-q/technology/experience
http://pragprog.com/titles/nmquantum
http://forums.pragprog.com/forums/nmquantum

The examples for the IBM Q Experience are written in the Open Quantum
Assembly Language.18,19,20 These programs use a .qasm file extension. We’ll
learn this language along the way.

You’ll Write Most Programs Using Drag-and-Drop

Although .qasm looks like assembly language, you’ll learn quantum
computing concepts by dragging and dropping quantum devices
on a graphical interface. This visual form of your program trans-
lates into .qasm code. You can also upload the source code in this
book, which then produces the visual representation.

Once you understand how to design algorithms with quantum
effects, programming them in a conventional language becomes
routine. In Programming with Qiskit, on page ?, you’ll learn to
program quantum concepts using conventional languages such
as Python. With these languages, though, you don’t get the
immediate interactivity that drag-and-drop brings when learning
about quantum phenomena.

In addition to IBM’s Qiskit, you can use the principles and tech-
niques in this book to program quantum computers in languages
from other vendors, such as Amazon’s Braket, on page ?, Google’s
Cirq, on page ?, and Microsoft’s Q#, on page ?.

Although we’ll work with the IBM Quantum Computer, our examples are
universal and easily modified to run on other quantum circuit computers.

Now that we’ve settled on a quantum computer and signed into our account,
let’s take a walk-through of the interface before we run the quantum program
to find a feasible schedule for the talk show hosts.

On quantum circuit computers, a quantum program is also called a circuit,
which is a visual representation of the sequence of quantum instructions.
Thus, to start writing a quantum program, log in to the IBM Quantum Com-
puter and click the Circuit Composer icon on the left margin, as shown in
the figure on page 6.

18. https://arxiv.org/abs/1707.03429
19. https://github.com/Qiskit/openqasm
20. https://github.com/Qiskit/openqasm/blob/master/spec/qasm2.rst

• Click HERE to purchase this book now. discuss

Your First Quantum Program • 5

https://arxiv.org/abs/1707.03429
https://github.com/Qiskit/openqasm
https://github.com/Qiskit/openqasm/blob/master/spec/qasm2.rst
http://pragprog.com/titles/nmquantum
http://forums.pragprog.com/forums/nmquantum

This takes you to a page that lists your quantum programs. To create a new
program, click the New Circuit button, shown in the following figure:

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nmquantum
http://forums.pragprog.com/forums/nmquantum

This action will open up the following interface:

This interface is called the Composer. Its key elements are as follows:

1. In a quantum circuit computer, the quantum instructions are called gates.
To write a program, you drag and drop these gates on the main area
labeled Your Program Is Built Here.

2. The variables of your computational problem are stored in arrays that
are the subatomic particles in the computer. The “quantum” stuff
happens here.

3. To see the code corresponding to the visual drag-and-dropping of the
gates, click this tab to open the Circuit editor.

4. To Save and Run, click the respective buttons in this area.

Over the subsequent chapters, you’ll learn to write quantum programs from
scratch. For now, though, you’ll run a complete program and see for yourself
how it solves the Hotel Scheduling Problem. You can get the program from the
book’s official page.21

Simple Scheduling Problem

The quantum program you’ll run is actually a simpler version of
the Hotel Scheduling Problem formulated in Writing a System of
Boolean Logic Expressions, on page 2, as its solution is easier to
verify.

21. https://pragprog.com/book/nmquantum/quantum-computing

• Click HERE to purchase this book now. discuss

Your First Quantum Program • 7

https://pragprog.com/book/nmquantum/quantum-computing
http://pragprog.com/titles/nmquantum
http://forums.pragprog.com/forums/nmquantum

Simple Scheduling Problem

In the simpler version, we’ll work with just one hotel, Bellagio, and
the two hosts, Kimmel and Maher. The solution to this problem
is then that each of them performs on a different day—we can’t
have both perform on the same day or have a day when neither
performs.

The first few lines of the program are listed here:

Bellagio_Hotel_Scheduling_Problem_Final.qasm
OPENQASM 2.0;
include "qelib1.inc";

// Initialize Quantum and Classical Registers
qreg q[7];
creg c[2];

// Generate All Combinations
h q[0];
h q[1];
h q[2];
h q[3];

//// ITERATION 1
// Constraints (to tag optimal solution)
x q[4];
x q[5];
cx q[0],q[1];
cx q[2],q[3];
x q[0];
x q[1];
x q[3];
x q[1];
x q[3];
ccx q[1],q[3],q[4];
x q[1];
x q[2];
x q[3];
ccx q[0],q[2],q[5];
x q[0];
x q[2];
ccx q[4],q[5],q[6];
x q[0];
x q[2];
z q[6];

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/nmquantum/code/Bellagio_Hotel_Scheduling_Problem_Final.qasm
http://pragprog.com/titles/nmquantum
http://forums.pragprog.com/forums/nmquantum

The first line specifies the version of the Open Quantum Assembly Language
(OpenQASM) for our programs. On the second line, we pull in an include file
containing the specifications for commonly used functions in a quantum
program. These two lines form the header in every program we write for
IBM’s Quantum Computer. We will cover the remaining lines in subsequent
chapters.

Quantum Programming Language Versus Conventional Languages

Although the statements in a quantum program resemble those
of digital computers, they are instructions to invoke quantum
phenomena to solve computationally intensive problems. They’re
not a direct replacement for those used in conventional computer
languages. They’re based on a fundamentally new template with
its own set of concepts and schemes, which you’ll learn about in
subsequent chapters.

To import this program, click the Circuit Composer tab on the bar on the left
edge of the browser to go to the page that lists your programs. On the top of
this list, click the Import QASM File button and select the program you just
created from your desktop:

Once the program has been loaded, you’ll see it in the list. Click it to open
the program in the Composer. You’ll see the following visual representation
of the code you just imported:

To see the code listing, click the Circuit Editor tab on the left edge of the
Composer.

• Click HERE to purchase this book now. discuss

Your First Quantum Program • 9

http://pragprog.com/titles/nmquantum
http://forums.pragprog.com/forums/nmquantum

We’ll explain how the code works in subsequent chapters. For now, though,
Save the code and click the Run button on the top right.

On the next screen, you have a choice of quantum computers, the backend,
available along with a simulator in the drop down on the left:

If you choose to run the program on a real quantum computer, your program
will be placed in queue. Depending on the workload of the specific quantum
computer selected, my programs have taken anywhere from fifteen minutes
up to a day to get back the results. Of course, the actual runtime of your code
on the computer is very quick. Using the simulator, on the other hand, will
give you results almost immediately.

Use the default in the second drop-down, Number of Shots. We will explain
later when to change this value.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nmquantum
http://forums.pragprog.com/forums/nmquantum

Quantum Computer Simulators

Quantum computers rely on marshalling the quantum mechanical
nature of subatomic particles to get them to perform computations
for super-hard applications. These quantum features include
superposition and entanglement, concepts we’ll study later, and
need special-purpose hardware from the ground up. These phe-
nomena can’t be reproduced on classical machines. Consequently,
although simulators mimic these characteristics on digital com-
puters, they can’t tap into their inherent potential power. Hence,
simulators are good for only small applications.

Examining the Output
The link to the Results of your program, whether it’s still waiting to be executed
or is complete, appear below the Composer. Scroll the page to get to it and
click the link when it’s available to view the results. (Every time you execute
a program, a new Results link is created.)

On the Results page, scroll down to the Result section, where you’ll see a
graphical output similar to the following figure:

We’ll go over interpreting the output of the program in the next chapter. For
now, I just want to point out a few salient points about how the program
reports the results of an execution.

Quantum computers work with the quantum equivalents of binary bits. So,
while they go about computing a solution differently from classical machines,
we’ll still deal with the 0 and 1 binary concepts in our programs.

In the Hotel Scheduling program, we defined the quantum equivalents of the
classical bits representing the various options for the talk show hosts to
perform. Thus, the program returns values for these options as strings of 0s
and 1s, which you’ll see at the bottom of each bar.

• Click HERE to purchase this book now. discuss

Your First Quantum Program • 11

http://pragprog.com/titles/nmquantum
http://forums.pragprog.com/forums/nmquantum

For reasons that’ll become clear in subsequent chapters, the taller middle
two bars correspond to feasible schedules. The binary strings at the base of
these bars are 01 and 10. These are the ones that correctly solve the Boolean
logic expressions for the simpler version. The others are discarded. I realize
you may not understand the how and why of selecting this particular string
of 0s and 1s gives the optimal solution nor how it relates to the problem vari-
ables. But it’ll soon start making sense. Although we’ll go over this example
in detail in Searching for an Optimal Schedule, on page ?, the point I want
to make now is that quantum programs return valid results for real world
problems—they’re not just laboratory experiments.

This string of 0s and 1s corresponds to the following solutions:

k = 0 ↦ Jimmy Kimmel performs at Alladin on Day 1 and at Bellagio on Day 2
m = 1 ↦ Bill Maher performs at Bellagio on Day 1 and at Caesars on Day 2

and

k = 1 ↦ Jimmy Kimmel performs at Bellagio on Day 1 and at Aladdin on Day 2
m = 0 ↦ Bill Maher performs at Caesars on Day 1 and at Bellagio on Day 2

In other words, limiting our attention to just the assignments for Bellagio,
the solutions represent two valid schedules:

Solution 2Solution 1

KimmelMaherDay 1

MaherKimmelDay 2

This, then, is a typical way quantum programs are used in practice in the
industry: create a system of binary logic expressions, model the task as a
Boolean Satisfiability problem, and then set up those expressions in a pro-
gram. The more variables you use, the more complex the expressions—in this
case, as the number of talk show hosts, days, and hotels increase, the number
of possible solutions increases exponentially. In other words, the problem
grows astronomical quickly. Traditional methods quickly reach their limit
with such problems, which means that developers settle for imperfect solu-
tions, which leaves money on the table. As you’ll soon understand, a quantum
computer solves such problems in a heartbeat.

Even though this problem can be solved using a custom-built technique, as
explained in Knuth [Knu11], a quantum program is still more efficient in the
sense that it’s both easier to set up and it returns a solution quickly.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nmquantum
http://forums.pragprog.com/forums/nmquantum

Quantum Computers Are Still in Their Infancy

The number of bits that a quantum computer can handle, their
stability, and the speed of computations are improving continually.
So, although quantum computers haven’t quite achieved the
quantum advantage, the point at which quantum computers are
faster than classical ones, the gap between them is closing—dare
I say—daily.

Bottom Line
Quantum computing is real—it’s no longer just theory and wishful thinking,
nor do you need pots of money to use one. It has literally come to a theater
near you.

Unlike other kinds of computer technology, quantum computing works on a
totally different set of principles and needs specialized hardware. As a result,
classical code won’t work on them. You have to rewrite your programs from
the ground up.

Although I glossed over several aspects of running the Hotel Scheduling
Problem on a quantum computer, I wanted to drive home the point that
quantum programs are:

• Not isolated statements that do nothing useful other than demonstrate
esoteric concepts; they can do useful computations for standard appli-
cations.

• Like conventional programs in the sense that you use standard interfaces
to program and get your code to execute on them—you’re not working in
lab coats in sterile environments on particle accelerators.

• Programmable using standard statements. While these types of computers
are based on quantum mechanics, the programming statements are mun-
dane—no arcane constructs—and use familiar programming instructions.

In the next chapter, we’ll learn about quantum mechanics principles in a way
that emphasizes its connection with computer science and makes the quantum
aspects more concrete.

• Click HERE to purchase this book now. discuss

Bottom Line • 13

http://pragprog.com/titles/nmquantum
http://forums.pragprog.com/forums/nmquantum

