
Extracted from:

Modern Front-End Development for Rails
Hotwire, Stimulus, Turbo, and React

This PDF file contains pages extracted from Modern Front-End Development for
Rails, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Modern Front-End Development for Rails
Hotwire, Stimulus, Turbo, and React

Noel Rappin

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Katharine Dvorak
Copy Editor: Adaobi Obi Tulton
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-721-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Interactivity, State, and Hooks
At this point, React has taken over part of our page and is drawing the seats,
which is nice enough, but we’d like it to, you know, react to something. We’d
like to have a little interactivity.

In React, you can use JSX to specify event handlers on React elements in
much the same way you would when writing old-school JavaScript embedded
in HTML. The problem is how to make changes to our components as a result
of those events. As mentioned, the props we pass into each component are
immutable, which means if we want to change something about a component,
we can’t use props. React uses the term state to refer to the parts of a compo-
nent that change and trigger an update to how the component is displayed
when they are changed.

To be clear, although a component can’t change its own props, changing the
state of a component can cause that component to rerender child components
with new props.

Because state changes are used by React to trigger a redrawing of the page,
React requires you to register them with the system; you can’t just change
the value of a variable and be done with it. React allows you to designate a
value as being part of the state and gives you a special setter for that value
using a mechanism called hooks.

Hooks are new in React as of version 16.8. Before then, components defined
as functions could not manage changing state (components defined as
classes always could manage state using a different mechanism). As mentioned
earlier, the React core team has said that hooks and functional components
are the way of the future, which is why we will be focusing on using hooks
to manage state in this book.

Here’s the code for the Seat component that changes status when clicked:

chapter_04/03/app/packs/components/seat.tsx
import * as React from "react"Line 1

-

interface SeatProps {-

seatNumber: number-

initialStatus: string5

}-

-

const Seat = ({-

seatNumber,-

initialStatus,10

}: SeatProps): React.ReactElement => {-

const [status, setStatus] = React.useState(initialStatus)-

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/nrclient/code/chapter_04/03/app/packs/components/seat.tsx
http://pragprog.com/titles/nrclient
http://forums.pragprog.com/forums/nrclient

-

function changeState(): void {-

if (status === "held") {15

setStatus("unsold")-

} else {-

setStatus("held")-

}-

}20

-

function stateDisplayClass(): string {-

if (status === "held") {-

return "bg-green-500"-

} else {25

return "bg-white hover:bg-blue-300"-

}-

}-

-

const cssClass = "p-4 m-2 border-black border-4 text-lg"30

-

return (-

<td>-

<span-

className={`${cssClass} ${stateDisplayClass()}`}35

onClick={changeState}>-

{seatNumber + 1}-

-

</td>-

)40

}-

-

export default Seat-

The first new React-specific line here is line 12, const [status, setStatus] =
React.useState(props.initialStatus). We are calling the React method useState, which
is a React hook method. It’s called a hook because it allows our component
to “hook into” the React rendering life cycle to allow the component to change
the larger system. React defines several different default hooks, plus you can
create your own.

Right here, right now, we’re calling useState. What useState does is register a
given value as being a part of React state such that changing that value trig-
gers a rerender. The argument to useState is the initial value of the new state
object in question—in our case, we’re taking the value from an initialState passed
in as a prop. (We’ll need to change the row.tsx component so that its call looks
like this: <Seat key={seatNumber} seatNumber={seatNumber} initialStatus="unsold" />.)

The useState method has kind of a weird return value; it returns a two-element
array, which you typically capture into two different variables using Java-
Script’s destructuring syntax. Here we are capturing the values into variables

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrclient
http://forums.pragprog.com/forums/nrclient

named status and setStatus. The first return value, in our case, status, is a prop-
erty that has the current value of our state. The second return value, setStatus,
is our state setter—a function that we can call later in our component to
change the value of the state and trigger a redraw.

The useState Hook Initial Value

One important gotcha to keep in mind here is that the argument
passed to useState is only used the first time the component is
rendered. On subsequent rerenders, the component keeps track
of the existing state and does not need or use the initial value.

This is great—we now have a mechanism for both getting and setting the
value of the changing state of our component, which we can then use through
the rest of our component.

Let’s jump to the JSX return value of the component. Two things about this
value have changed:

• Click HERE to purchase this book now. discuss

Interactivity, State, and Hooks • 7

http://pragprog.com/titles/nrclient
http://forums.pragprog.com/forums/nrclient

• the className now includes a call to a stateDisplayClass() function, and
• we’ve added another prop to the span, namely onClick={changeState}.

The onClick prop is how React does event handling: you create a prop whose
name is on followed by the event; the value of that prop is a function that is
called when the event happens. In our case, we’re using {changeState}. (For a
complete list of event names supported by React, check out the official docs
on the React website.)2

When the button is clicked, the onClick event fires, which causes us to go to
the changeState function inside our component. Within that function we do a
check on the value of status—the same status variable that was defined by the
call to useState. We then change the value of status based on the current value
of status using the setState function, also the one defined by useState, to officially
register the change with React.

Using setState triggers a redraw of the element, which takes us back to the
return value and the call to stateDisplayClass(), which is used to change the
background color of the item based on the current status. Clicking once
changes the status to held, which then causes the display class to be bg-green-
500—Tailwind-speak for “make the background green.” Clicking again calls
setStatus("unsold"), and the rerender changes the display class to bg-white hover:bg-
blue-300, or “make the background white but change it to light blue when we
hover the mouse pointer over it.” There are a couple of logistical issues with
React hooks to keep in mind:

• Hooks can only be used in components that are defined as functions and
can only be declared at the top level of the function—not inside a nested
function, loop, or if statement.

• If you want to manage more than one value in state, you can make mul-
tiple calls to useState to get setters for each of them, or you can have the
initial value be an array or object. If the value gets more complicated,
there may be other hooks that will be easier to use, which we’ll talk more
about in Chapter 12, Managing State in React, on page ?.

• If it bothers you that the status takes strings as values but only has a
limited number of valid string values, never fear, TypeScript has a mech-
anism for that, and we’ll take a look at it in Chapter 14, Validating Code
with Advanced TypeScript, on page ?.

2. https://reactjs.org/docs/events.html

• 8

• Click HERE to purchase this book now. discuss

https://reactjs.org/docs/events.html
http://pragprog.com/titles/nrclient
http://forums.pragprog.com/forums/nrclient

