
Extracted from:

Modern Front-End Development for Rails
Hotwire, Stimulus, Turbo, and React

This PDF file contains pages extracted from Modern Front-End Development for
Rails, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Modern Front-End Development for Rails
Hotwire, Stimulus, Turbo, and React

Noel Rappin

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Katharine Dvorak
Copy Editor: Adaobi Obi Tulton
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-721-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

As Rails 6 developers, our primary interaction with webpack is going to be
through the Webpacker tool provided by Rails. In this chapter, we’ll take a
look at using Webpacker in development and how to customize it when you
want additional features.

As I write this, the current version of Webpacker is 6.0 beta 6. I expect there
to be some changes before 6.0 goes final.

Installing Webpacker

The Webpacker gem is a default part of a new Rails 6 installation,
which means Webpacker goes in the Gemfile. And by default, the
webpack:install task is run when the app is created. You can skip
Webpacker entirely with rails new . --skip-webpack-install. After the app
is created, you can add Webpacker to an existing app with the
rake task rails webpacker:install.

Webpacker Basics
Webpacker is a wrapper around webpack, designed to make webpack easier
to manage within a Rails application.1 The main thing Webpacker does is
generate a webpack configuration using a set of inputs that is hopefully
simpler to deal with than a full webpack configuration. It uses a YAML file,
config/webpacker.yml, to specify a lot of webpack values, and specific environment
overrides are in the config/webpack directory.

That basic configuration gives you the following features:

• Any file in app/packs/entrypoints with a known extension (usually a JavaScript
or CSS extension) is the entry point of a new pack. The name of the pack
is the base name of the file. If there are multiple files with the same base
name but different extensions, they are combined into the same pack.

• Any file in app/packs can include any other file in app/packs relative to app/packs.
Any file in node_modules can also be included.

• Resources in a pack can be added to a page by using the helper method
javascript_pack_tag.

• CSS in a pack can be added to a page by using the helper method
stylesheet_pack_tag.

• Static images can be used in a link or img tag with the asset_pack_path helper
method.

1. https://github.com/rails/webpacker

• Click HERE to purchase this book now. discuss

https://github.com/rails/webpacker
http://pragprog.com/titles/nrclient
http://forums.pragprog.com/forums/nrclient

• In development, Rails automatically calls webpack to compile code on a
page load if the webpack files have changed. You can trigger this compi-
lation manually by running a script named bin/webpack.

• A development server, bin/webpack-dev-server, can be run. This compiles
webpack on page save, and live reloads the page if possible. When using
webpack-dev-server, webpack assets aren’t saved to disk; they are served by
the dev server.

• When deploying, the webpack compiler can be invoked to put your static
files in the public directory where they can be read.

That’s a lot of things! Let’s, well, unpack them.

Writing Code Using Webpacker
In development, we mostly worry about three things: writing our code, getting
our code on to the page, and being able to recompile the code quickly and
easily.

Somewhat uncharacteristically for Rails, Webpacker does not suggest any
structure for your code beyond having the entry point be in app/packs/entrypoints.
The important feature is that you can import files relative to either app/packs
(for your own code) or node_modules (for third-party code).

That said, some suggestions:

• Keep as little code as possible in your actual entry point; it should mostly
just import things.

• Where possible, having multiple modular small pack files is probably
better than having a single one. (There’s a webpack optimization that
makes this optimal from a download standpoint.)

• If you import a directory, rather than a file, the module system will auto-
matically import the index.js (or index.ts) file in that directory. We’ve already
seen this in our boilerplate code: the pack imports controllers, and con-
trollers/index.js handles the autoload of controller modules. You can use this
to modularize your imports somewhat and make it easy to share common
imports across pack files.

• Your framework of choice may have some community standards for how
code is structured. If so, you should follow them.

• I wouldn’t put anything other than entry point files in the entrypoints
directory, and I wouldn’t create any subdirectories there either. But I
wouldn’t use those subdirectories for regular source code.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrclient
http://forums.pragprog.com/forums/nrclient

• It’s tempting, but avoid creating a top-level app/packs/src directory on the
ground that anything in the app/packs directory is source of some kind or
other. Try to be more specific about top level names.

• I would, though, try to separate out CSS into app/packs/stylesheets.

To use a pack in your Rails code, you use the helpers javascript_pack_tag or
stylesheet_pack_tag. These use webpack “chunks” by default. In webpack, a chunk
is a way to extract common dependencies so that if you are importing multiple
packs, shared dependencies are only downloaded to the browser once.

Both of the helpers work the same way. The arguments are a list of pack
names and an optional set of options. The helper creates a script tag (for
JavaScript) or a link tag (for CSS) for each pack name in the list. Both methods
just defer to the existing Rails helpers javascript_include_tag and stylesheet_include_tag,
and any options are just passed right through; although in practice, most of
the options to the existing Rails helpers have to do with modifying the even-
tual URL and aren’t really relevant to packs.

There’s a little bit of tension between the classic Rails structure of just putting
the javascript_include_tag in the header for all pages and what is probably a more
webpack-idiomatic structure of having a lot of small packs and only loading
the ones you need for each page. Therefore, if your setup is at all complicated,
I recommend you use the Rails content_for feature to customize the header on
a per-page basis.

To do this, in the HTML header where you might otherwise have the call to
javascript_pack_tag, try this instead:

<%= yield(:packs) %>

Then in any page that uses packs, do something like this:

<% content_for :packs do %>
<%= javascript_pack_tag(:application) %>

<% end %>

The yield/content_for construct allows you to customize the webpack output on
a page-by-page basis and has the side benefit of making the available Java-
Script visible on the individual page itself, which can make it a little easier
to figure out what’s going on.

Integrating Webpacker with Frameworks
Once upon a time, when this book was young and Hotwire was just a gleam
in DHH’s eye, Webpacker included installation scripts for many different

• Click HERE to purchase this book now. discuss

Integrating Webpacker with Frameworks • 7

http://pragprog.com/titles/nrclient
http://forums.pragprog.com/forums/nrclient

frameworks and tools. The Webpacker team has abandoned that approach,
presumably on the grounds that keeping up to date with nearly a dozen dif-
ferent JavaScript tools can be exhausting. (I can relate.) Also, most tools
provide webpack instructions now, and those can be used directly.

However, there are some special cases:

CoffeeScript
If you install the correct loader, yarn add coffeescript coffee-loader, Webpacker
will compile .coffee files using the CoffeeScript compiler.2

CSS
You need to install several packages for CSS support: yarn add css-loader mini-
css-extract-plugin css-minimizer-webpack-plugin. There’s an optional change to the
config/webpack/base.js file for easier file resolving. Also, you can optionally
add support for PostCSS (yarn add postcss-loader), Sass (yarn add sass sass-loader),
Less (yarn add less less-loader), or Stylus (yarn add stylus stylus-loader). Files with
the correct extension will be processed by that tool:

const { webpackConfig, merge } = require("@rails/webpacker")
const customConfig = {

resolve: {
extensions: [".css"],

},
}

module.exports = merge(webpackConfig, customConfig)

ERB
With the rails-erb-loader installed, any webpack file can have an .erb extension,
which causes the file to be parsed by ERB before any other processing.3

React
Installing yarn add react react-dom @babel/preset-react causes the Babel preset to
adjust to compile .jsx files (and .tsx files if you are using TypeScript).4

TypeScript
Installing yarn add typescript @babel/preset-typescript makes Babel aware of .ts
files, and yarn add fork-ts-checker-webpack-plugin adds the actual type checking
to the compiler. You also need a tsconfig.json file, which we’ll talk about in
Chapter 14, Validating Code with Advanced TypeScript, on page ?.5

2. https://coffeescript.org
3. https://github.com/usabilityhub/rails-erb-loader
4. https://reactjs.org
5. https://www.typescriptlang.org

• 8

• Click HERE to purchase this book now. discuss

https://coffeescript.org
https://github.com/usabilityhub/rails-erb-loader
https://reactjs.org
https://www.typescriptlang.org
http://pragprog.com/titles/nrclient
http://forums.pragprog.com/forums/nrclient

Stylesheets and Assets
With Webpacker, you can include CSS files and external modules into your
JavaScript in the same way you would a JavaScript module. In fact, many of
the CSS frameworks package themselves as npm modules for easy installation
(though in some cases you need your own SCSS file to import them). But even
if you have written a CSS or SCSS file, you would still include it using the
same import syntax you would use for a JavaScript file.

Once included, Webpacker uses the mini-css-extract-plugin to create a separate
pack for the CSS information that you then load. Alternately, you can use a
css or scss file with the same name as the js pack to create a Stylesheet pack.

Often, third-party Node modules will have CSS imports as well as JavaScript
imports (for example, enhanced form tools like Chosen6). The CSS file is just
included in the entry point along with the JavaScript file.

If you have included PostCSS,7 you also need to create a postcss.config.js file,
which you can use if you want PostCSS behavior and which involves many
different kinds of processing on CSS and SCSS files.

If you want to access static files served by webpack, Webpacker provides a
few helper files. Images require a little bit of special treatment. The
image_pack_path and image_pack_tag helpers mimic the default Rails image_path and
image_tag helpers and assume that image paths are relative to app/packs/images.
So our previous example uses image_pack_tag("chevron-right.svg") to find a file that
is at app/packs/images/chevron-right.svg. For images that are not in the app/packs/images
directory, prepend your file with media, as in image_pack_tag("media/static/file.gif").
Webpacker also provides a favicon_pack_tag and a generic asset_pack_path helper.

Running webpack
Rails offers three ways to compile your webpack packs:

• Running bin/webpack from the command line
• Compiling automatically from the Rails development server
• Running bin/webpack-dev-server to automatically compile when files are

changed

Rails provides bin/webpack, which is just a command-line interface to running
the webpack compiler. You can run this at any time, and webpack will output
files to (by default) /public/packs.

6. https://harvesthq.github.io/chosen
7. https://postcss.org

• Click HERE to purchase this book now. discuss

Running webpack • 9

https://harvesthq.github.io/chosen
https://postcss.org
http://pragprog.com/titles/nrclient
http://forums.pragprog.com/forums/nrclient

Rerunning webpack manually all the time is something of a pain, so Rails will
do it for you in development. By default, if Rails encounters a pack_tag helper
and there are changed files in the pack, Rails will automatically rerun webpack
before rendering the page. That works, but it can be slow, especially if you
are compiling a lot of files.

The alternative is webpack-dev-server, which is a server that manages compilation
and delivery of your webpack files in development. To run it, you need to start
a new terminal session, go to your application directory, and invoke this
command:

$ bin/webpack-dev-server

You’ll see some output from the compilation of your webpack assets and then
the server will wait. When you save a file that is part of a pack, the dev server
will recompile, and will also live reload a browser page if you have one open.
If the compilation fails, the reloaded browser page will get an error message.
This is usually more convenient in development than just allowing Rails to
compile on page hit.

A Note or Two from Experience

webpack-dev-server recompiles and reloads when the JavaScript
changes. It does not recompile and reload when you change your
Rails view file. So staring at the browser waiting for your changes
to show up does not work if you’ve only touched the view file.

Also, if you are working on multiple Rails apps at once, make sure
you close webpack-dev-server on the apps you aren’t working on or
you’ll get weird results if your running webpack-dev-server doesn’t
match your running application.

You can configure the dev server—the default configuration is stored in the
config/webpack.xml file, and those values are passed right through to the webpack
config. I’ve never needed to touch these values. The configuration does let
you change the port and host that the server listens on, and I can see where
that would be useful if you had multiple apps running at once or if you had
a non-standard development environment (for example, you might need to
change the host if you are using Docker).

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrclient
http://forums.pragprog.com/forums/nrclient

