
Extracted from:

Modern Front-End Development
for Rails, Second Edition

Hotwire, Stimulus, Turbo, and React

This PDF file contains pages extracted from Modern Front-End Development for
Rails, Second Edition, published by the Pragmatic Bookshelf. For more information
or to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Modern Front-End Development
for Rails, Second Edition

Hotwire, Stimulus, Turbo, and React

Noel Rappin

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Katharine Dvorak
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-961-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

So You Want to Write Some
Client-Side Code

“I need a website,” the client said.

“Great,” you think. Ruby on Rails is a solid way to go. Version 7.0 just came
out. It’s still the best way for a small team to be as productive as a big team.
You are ready for this. You start thinking of estimates and modeling data
structures…

“I want it to look cool, with lots of stuff moving around, and be extremely
interactive,” the client added.

“Ugh,” you think. That brings in JavaScript. And with it, a whole lot of deci-
sions. What language? There’s not just JavaScript, but a host of languages
that compile to JavaScript: TypeScript, Elm, ClojureScript. What framework?
There are dozens: React, Vue, Ember, Hotwire, Svelte, Preact, and on and on.
How to package the code and CSS? Should you use the existing Rails asset
pipeline, or Propshaft, or jsbundling, or Webpacker? What about that new
Hotwire thing the Rails team has been going on about?

Suddenly you are overwhelmed by the added complexity.

Although it’s primarily a server-side tool, Ruby on Rails offers a lot of support
for client-side code. Rails version 7.0 has tools that help you interact with
the JavaScript ecosystem to build an exceptional front-end experience. In
this book, you’ll learn how you can enhance the user experience of a standard
Rails application using front-end tools from the Rails ecosystem (Hotwire,
Stimulus, Turbo, and jsbundling) and tools from the JavaScript ecosystem
(esbuild, TypeScript, and React) to create a great Rails-based app.

So that interactive website your client wants? No problem.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

Basic Assumptions
Rails is an opinionated framework, and this is an opinionated book. Being
opinionated means that Rails makes certain tasks easier if you are willing to
structure your program the way the Rails core team thinks you should. For
this book, being opinionated means not trying to show you every possible
way Rails and JavaScript can combine, but instead focusing on the tools I
think will be most useful. Perhaps the most important opinion is that we’re
going to use JavaScript to enhance a mostly server-side Rails application
rather than use JavaScript to build a completely separate single-page
application (SPA) that only uses Rails as an application programming
interface (API).

My basic argument for not writing an SPA is that between Rails and a standard
browser, a tremendous amount of complexity is already handled for you.
Moving to an SPA structure requires you to build much of that functionality
yourself. Over time, the front-end frameworks have gotten better at handling
the complexity for you, but to me, it often feels like taking three right turns
rather than just taking one left turn. For now and for my money, Rails is less
complicated than an SPA for many applications.

That said, there are legitimate places where an SPA might make sense. If your
user experience is so different from the normal web structure that the existing
behavior of Rails and the browser isn’t much help, then an SPA begins to
look attractive. If your back end is already an API supporting a mobile app
or external services, then an SPA can also act as a consumer of that API,
saving you from duplicating view-layer logic (but you can use Rails and web
views to go surprisingly far in a mobile app). However, my experience is that
most of the time, for most teams, starting by leveraging the Rails view and
browser features is the best way to create a great application.

Within that assumption—Rails back end with some front-end interaction—
there’s still a wide range of tools, architectures, and techniques that might be
appropriate for the application. We’re going to navigate that space. And within
that space, we are going to explore different ways of structuring a Rails/
JavaScript collaboration.

The Tools We’ll Use
Over the course of the book, we’ll walk through the basics of getting Rails set
up to serve JavaScript and CSS to the browser. Then we will write code to
get the browser to do things. We’re going to look at two different frameworks
that have very different approaches—Hotwire and React:

So You Want to Write Some Client-Side Code • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

• Hotwire is a framework that allows you to keep most of your logic on the
server and communicate with the client by sending HTML.1 Much of the
Hotwire code uses Turbo, which is a library that allows you to do complex
client-server interactions without writing custom JavaScript. Turbo itself
consists of Turbo Drive, which is the successor to Turbolinks and allows
you to speed up basic links through your site; Turbo Frames, which allows
you to easily replace part of your page with new HTML from the server;
and Turbo Streams, which allows you to do arbitrary Document Object
Model (DOM) replacement without any custom JavaScript. Hotwire also
includes Stimulus, a JavaScript library that manages client-side interac-
tions more directly.

• React is a framework where most of the rendering logic is on the client.2

In React, you describe your output using JSX, a language for specifying
HTML in JavaScript. You also describe what variables make up the state
of the system, and when that state changes, React automatically redraws
the parts of the screen that reflect the new state. React typically commu-
nicates with the server as an API and frequently expects to receive JSON
data in return, which is used to update the state.

We will use other more foundational tools—TypeScript, esbuild, jsbundling,
and cssbundling—to build the infrastructure of our application, no matter
what JavaScript frameworks we use on top:

• TypeScript is an extension of JavaScript that provides type checking and
type inference, which means TypeScript ensures that values in your code
have the types you expect.3 It’s a superset of JavaScript, which means
that any JavaScript program is valid TypeScript, but TypeScript also
allows you to add some basic type checking to your code. More advanced
usage of TypeScript allows you to use the type system to prevent invalid
states at compile time, which can make runtime errors less likely.

• esbuild calls itself “an extremely fast JavaScript bundler.”4 The purpose
of esbuild is to convert developer-friendly front-end code into a browser-
friendly package. The inputs are the code you write—which for our pur-
poses are mostly JavaScript and TypeScript—all arranged in a hopefully
logical structure. esbuild packages all the files into a bundle that the
browser can use, which involves translating code and resolving references

1. https://www.hotwire.dev
2. https://reactjs.org
3. https://www.typescriptlang.org
4. https://esbuild.github.io

• Click HERE to purchase this book now. discuss

The Tools We’ll Use • vii

https://www.hotwire.dev
https://reactjs.org
https://www.typescriptlang.org
https://esbuild.github.io
http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

to code in different files. The converted JavaScript files can then be sent
to a browser. esbuild is very fast and simpler to configure for basic tasks
than other tools.

• JavaScript Bundling for Rails5 is a new Rails 7.0 tool that allows you to
use the JavaScript bundling tool of your choice—we’re using esbuild—
to wrap your JavaScript code and prepare it for a Rails asset pipeline.

• CSS Bundling for Rails6 is a new Rails 7.0 tool that allows you to use one
of a few different CSS processing tools—we’re using Tailwind CSS—to
convert your developer CSS to prepare it for asset download.

• Propshaft7 is a new Rails 7.0 tool that takes the output of the bundling
tools and delivers it to the browser, providing for digest hash creation, a
developer platform, and the ability to reference assets in code. It’s a simpler
replacement for Sprockets, the older asset pipeline tool, for a toolchain
where the asset handler needs to do much less work.

• Import Maps for Rails8 is a standard tool that allows a browser to import
all of your separate JavaScript modules individually, but still allows them
to reference each other. This allows JavaScript code to be used without
a bundling step. Rails 7 supports Import Maps (in fact, it’s the default),
but we won’t use it throughout most of the book because TypeScript and
React support is tricky. I’ll discuss this more in Chapter 7, Bundling, on
page ?.

How This Book Is Organized
This book is divided into four parts.

In the first part, we’ll install and start using the tools we need to get Rails
working with the JavaScript ecosystem. We’ll start with a basic introduction to
installing the front-end Rails tools. Then we’ll add Turbo to the mix for richer
interactions, sprinkle that with Stimulus, and then see how React can interact
with Rails. Then we’ll augment both tools by looking at some great ways to use
CSS tools in our applications. Finally, we’ll take a closer look at our foundation,
including the basics of TypeScript and the Rails 7.0 bundling tools.

The second part has a deeper look at TypeScript and the bundling tools. In
the third part, we take a look at one important concern for front-end code:

5. https://github.com/rails/jsbundling-rails
6. https://github.com/rails/cssbundling-rails
7. https://github.com/rails/propshaft
8. https://github.com/rails/importmap-rails

So You Want to Write Some Client-Side Code • viii

• Click HERE to purchase this book now. discuss

https://github.com/rails/jsbundling-rails
https://github.com/rails/cssbundling-rails
https://github.com/rails/propshaft
https://github.com/rails/importmap-rails
http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

Why Doesn’t This Book Use Import Maps?

Since the first version of this book was released, the default set
of tools that Rails offers for a new application has changed. More
than once. The new default is to use import maps and a standalone
command line for Tailwind CSS, allowing for a Rails app that does
not require Node.js or the Node Package Manager (NPM).

However, for most of this book, we do not use import maps (you
can see samples of how they work in Appendix 1, Framework
Swap, on page ?. There’s a philosophical reason and a practical
reason. The philosophical reason is that it’s not clear to me what
is the upper bound of how complex an app can get using import
maps, and I’ve decided to err on the side of caution. (That said,
the Hotwire flagship app Hey.com uses import maps.)

The practical reason is that the book’s code already relies on
React’s JSX and TypeScript, both of which require the kind of
compilation step that import maps are supposed to get rid of.
Because Rails 7 provides a whole other set of great new tools for
bundling projects that require compilation steps, I decided to
present that, rather than limit the scope of the book only to tools
supported by import maps.

communicating with the server. Then we’ll look at managing the state of the
data in your client-side application. We’ll look at a JavaScript pattern called
a reducer and then talk about Redux, a library that implements the reducer
pattern and is commonly used with React.

The fourth part is about validating your code. We go further into TypeScript
and take a look at how we can use the type system to prevent error conditions.
We then talk about debugging and testing our applications.

Finally, in the appendix, we’ll rewrite all of the book’s code, first rewriting the
React code using Hotwire, then flipping the script and rewriting the Hotwire
code using React.

By the end of the book, you’ll have options that will show you how to structure
your code for different levels of client-side needs.

Let’s Build an App

Before we start talking about front-end structure, we need to have an app to
attach all that front-end structure to. I’ve created a sample website for a fic-
tional music festival called North By, where multiple bands will perform at

• Click HERE to purchase this book now. discuss

Let’s Build an App • ix

http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

various concerts during the event. This app contains a schedule of all the
concerts and venues. There isn’t much to this app. I used Rails scaffolding
for a minimal amount of administration, but it’s just a structure that lets us
get at the two pages we’ll be managing in this book: the schedule page and
the concert display page.

The schedule page shows all the concerts, acts, and times for the entire festi-
val. We’ll be adding features to this for inline editing, date filters, and search.
We’ll let users list favorite concerts, and eventually we’ll show up-to-date
information on how many tickets have been purchased.

The concert page shows you a simplified theater diagram for each concert
and lets you select seats for a simulated ticket purchase. On this page, users
can select seats and see their subtotal increase, or search for a block of seats
and see which seats are available.

The data model for the app looks like this:

• The festival includes several concerts that take place at particular start
times.

• Each concert has a venue, and each venue has a number of rows and a
number of seats per row (which I realize is vastly simplified from real
music venues, but we’re just going to pretend for now, because that gets
very complicated very quickly).

• Each concert has one or more gigs that make up the concert.

• Each gig matches a band to a concert, and has a start order and a duration.

• Each concert has a bunch of sold tickets, which link a concert to a partic-
ular row and seat in the venue.

• We’ve got users. A user can have tickets and a list of favorite concerts.

Here’s a diagram of the data model:

Concert
Venue

(rows)
(seats per row)

1*

Gig

1

*

Band
1 1

Tickets

1

*

So You Want to Write Some Client-Side Code • x

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

The app uses the Tailwind CSS framework,9 which is effectively a default
choice in Rails 7, though there are many other options.

The Sample Code
If you’d like to follow along with the application throughout the course of
the book, you can download the sample code files from the book page on
the Pragmatic Bookshelf website.10

The version of the code in the chapter_01/02 directory is the complete app setup
with all the data structures, but none of the working JavaScript (the chap-
ter_01/01 directory has mostly just the startup code from creating a new Rails
application). That’s probably the best place to start if you are following along.
After that, the directories are named after their chapter numbers and should
progress in order.

To run the code, you need a few dependencies:

• The code uses Ruby version 3.1. I recommend installing a Ruby version
manager such as RVM,11 rbenv,12 or chruby.13

• The code uses PostgreSQL,14 so you’ll need to have that set up on your
machine. And to help set up the Node.js packages, you’ll need Node.js
(versions 12.x, 14.x, or 16.x should work)15 and Yarn (version 1.22 is
preferable; the 2.0 version doesn’t currently work).16

A number of the tools used in this book are still in active development as I
write this. Here’s the combination of the most important versions of tools that
back the code in this book—please note that there might be some slight
variation as the book moves forward because some tools updated point
releases even during late revisions:

• cssbundling-rails 1.1.0
• Cypress 9.5.4
• jsbundling-rails 1.0.2
• Propshaft 0.6.4

9. https://tailwind_url
10. https://pragprog.com/titles/nrclient2
11. https://rvm.io
12. https://github.com/rbenv/rbenv
13. https://github.com/postmodern/chruby
14. https://www.postgresql.org/download
15. https://nodejs.org/en/download
16. https://yarnpkg.com/getting-started/install

• Click HERE to purchase this book now. discuss

The Sample Code • xi

https://tailwind_url
https://pragprog.com/titles/nrclient2
https://rvm.io
https://github.com/rbenv/rbenv
https://github.com/postmodern/chruby
https://www.postgresql.org/download
https://nodejs.org/en/download
https://yarnpkg.com/getting-started/install
http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

• Rails 7.0.2.3
• Ruby 3.1.2
• Stimulus 3.0.1
• Stimulus-Rails 1.0.4
• React 18.0.0
• Tailwind CSS 3.0.24
• Turbo 7.1.1
• Turbo-Rails 1.0.1
• TypeScript 4.6

To install this application, you need to be able to install Ruby and a Rails
application on your machine. I’m assuming that you are broadly familiar with
setting up Rails and its connection to the PostgreSQL database.

The sample code is split into a number of different directories, each corre-
sponding to a different stage of the app in the book. Examples in the book
will specify which directory is being used at any time.

From the downloaded code, you can run bin/setup within any of the individual
application directories. (You need to be on a system that runs a Unix-style
shell, like Bash or Zsh. You may also need to make bin/setup executable with
chmod +x bin/setup. If you need to do this for one file, you’ll likely need to do it
for all the files in the bin directory.)

I’ve slightly tweaked the setup script to make it a little more useful (Yarn isn’t
in the default file anymore).

The setup script will do the following:

• Install Bundler.
• Run bundler install.
• Run yarn install
• Run rails db:prepare—this creates the database
• Run rails restart.

The db:prepare command should also trigger rails db:seed to get sample data in
the database, however if for some reason the database already exists when
you run the script, then the seed command won’t be run and you’ll need to
run it separately.

With the app set up and the main branch running, run it using the com-
mand bin/dev—this command will start the Rails server, but also bundle
the JavaScript and CSS, such as it is at this point. You should hit
http://localhost:3000 where you’ll see the schedule page with a bunch of
dates at the top, a search field in the middle, and a lot of schedule information

So You Want to Write Some Client-Side Code • xii

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

at the bottom, with each scheduled day having a kind of ugly button labeled
“Hide.” If you click any of the concert names, you’ll be taken to a concert page
that shows basic data as well as a grid of sets for the show. Neither of these
pages has any interactivity at the moment.

From the login link, you can log in with username “areader@example.com”
and password “awesome.” Doing so will take you back to the schedule page,
with an additional option to make each concert a favorite.

The schedule page should look something like this (your randomized data
will be different):

If you want to keep following along, each separate step in the application is
a different directory in the sample code download, and you can move from
one to another to see the entire application at different steps.

Sample Code Troubleshooting
Every effort has been made to make sure this code can be set up and run.
However, this book covers a lot of tools, and there are a lot of developer setups
out there. Here are a few things to keep in mind as you work with the code:

• You are likely better off starting from the chapter_01/02 directory than from
scratch. The code in that directory is pre-seeded with some boilerplate
data files that aren’t completely described in the book, and the Gemfile.lock
and yarn.lock are already pinned to working versions—more recent versions
of the libraries may have breaking changes. The chapter_01/01 directory
doesn’t have any of the data models, it’s much closer to a bare new Rails
7 app.

• There may be cases where background files are changed and not men-
tioned in the text. I hope not, but it happens.

• Sometimes the node package manager can get into weird states, especially
if you have a lot of incremental changes to libraries. In particular, if you
get an error that suggests that React and Redux have been duplicated,

• Click HERE to purchase this book now. discuss

Sample Code Troubleshooting • xiii

http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

you may need to delete the entire node_modules directory (and maybe also
the yarn.lock file) and re-run yarn to refresh the modules.

• If you can’t get things started, reach out on Devtalk.com17 and post your
issue there.

What’s Next
There are a lot of ways to do client-side coding, but Rails is here to help. Let’s
start by taking a look at the tools it provides.

17. https://devtalk.com/books/modern-front-end-development-for-rails-second-edition/errata

So You Want to Write Some Client-Side Code • xiv

• Click HERE to purchase this book now. discuss

https://devtalk.com/books/modern-front-end-development-for-rails-second-edition/errata
http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

