
Extracted from:

Modern Front-End Development
for Rails, Second Edition

Hotwire, Stimulus, Turbo, and React

This PDF file contains pages extracted from Modern Front-End Development for
Rails, Second Edition, published by the Pragmatic Bookshelf. For more information
or to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Modern Front-End Development
for Rails, Second Edition

Hotwire, Stimulus, Turbo, and React

Noel Rappin

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Katharine Dvorak
Copy Editor: Karen Galle
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-961-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

In programming, the type of a piece of variable data indicates the set of values
that are valid for that data. For example, if I say that a variable is an integer,
that means I expect the variable to have a value like 1, -3, or 357 and not a
value like banana. If the variable is set to a value that is not of the expected
type, we think that something bad will happen. In some languages, the attempt
to set data to the wrong value leads to a compiler error; in other languages
it leads to incorrect or unspecified behavior at run time.

All high-level programing languages use some concept of type to determine
behavior. Which is to say that all of these languages determine behavior by
using not just the value of a variable in the system but also information about
what kind of value it is.

TypeScript is a superset of JavaScript that optionally allows you to add
annotations to the code to specify type information.1 TypeScript requires a
compilation step that enforces type consistency and converts valid TypeScript
to JavaScript suitable for browsers. The type system that TypeScript uses
makes inferences about types based on the code, even if you do not explicitly
provide type information. The goal of using TypeScript is to reduce code errors,
first by preventing type mismatches, and as you become more advanced, by
making invalid states into compiler-time errors so they are impossible to
achieve at run time. TypeScript only enforces type consistency at compile
time; it provides no protection against things that might happen at run time.

In this chapter, we’ll cover the basics of TypeScript’s syntax and semantics
and take a glimpse at more advanced features. Throughout the rest of the
book, you’ll learn about other TypeScript features as they become important
in improving the code we will be writing. We’ve already used some TypeScript
features in our concert app to make claims about data types. Now let’s go a
little deeper on the syntax and see what TypeScript makes possible.

Using TypeScript
We’ve already installed TypeScript back in Adding TypeScript, on page ? by
using the tsc_watch tool to run TypeScript’s type checker over our code base,
and then using esbuild to convert our TypeScript code into JavaScript.
TypeScript’s configuration is managed by a tsconfig.json file, which basically
specifies what TypeScript allows and the kind of code that TypeScript emits.
(I’ll talk about more about the tsconfig.json file in Chapter 13, Validating Code
with Advanced TypeScript, on page ?.)

1. https://www.typescriptlang.org

• Click HERE to purchase this book now. discuss

https://www.typescriptlang.org
http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

With TypeScript in place and with tsc_watch, every time we make a file change
the TypeScript type checker will run, and if all its type checking passes,
esbuild will convert it to JavaScript that can be sent to the browser. If the
type checking does not pass, the TypeScript compiler will return error mes-
sages explaining the problem.

The important bit here is that once the code is compiled, TypeScript is done.
TypeScript provides no protection at run time if the behavior of your data
does not match expectations. This is usually fine as long as all the data is
created by your code, but it can be a problem if your code is accepting external
data that has not been type checked (for example, incoming JSON data from
a server). Client-side TypeScript can guarantee that you are dealing with the
data consistently in your code, but it cannot guarantee that the incoming
data has the structure you expect.

Understanding Basic TypeScript Types
At its most basic, TypeScript allows you to annotate any variable declaration
with a type by using the syntax : <type>, as in let x: number. As we’ll see, this
can get more complicated, but the starting point is annotating variables with
types.

TypeScript defines four basic types:

• boolean: A Boolean value must be either JavaScript’s true or false value.

• number: JavaScript only has one numeric type for floating point numbers.
TypeScript’s number type supports floating point and integer literals, hex
literals (0xab32), octal literals (0o1234), and binary literals (0b10010).

• string: TypeScript allows both single and double quotes as string delimiters
and supports the backquote (\) syntax for template strings.

• object: TypeScript defines an object as anything that is a value and is not
one of the previous types, so not just raw objects, but also all instances
of classes. Normally, you’d use a more specific type annotation as
described in the following, rather than using plain object.

Both null and undefined are also TypeScript types, and you can say something
like let z: null = null, though it’s not clear why you’d want to.

By default, TypeScript allows the values null and undefined to be assigned to
any variable no matter what its declared type is. If you are familiar with other
relatively modern static-typed languages like Elm, Rust, or Swift, you may
know that those languages force you to explicitly declare when null is a valid

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

value for a given variable. That is not the default case in TypeScript, presum-
ably because forcing explicit null declarations would make dealing with
existing external JavaScript libraries quite complicated. Also, allowing null
and undefined values makes it easier to gradually add TypeScript to an existing
codebase. However, there is a compiler option, --strictNullChecks, which prohibits
assigning null to a value unless explicitly allowed.

Any type in TypeScript can be used as the basis of an array with two different
syntaxes that work identically: string[] or Array<string>. The second syntax is an
example of a more general TypeScript feature called generic types, which
allows the same type structure—in this case an Array—to have a different
internal type—in this case a string—while still retaining the same behavior no
matter the internal type.

Generic types allow you to have type checking in cases where the fact that
the type is consistent across a class or function is more important than what
specific type is involved.

Data structures are a common use case for generic types. If you have a type
that is a list, for example, and you want to write a method that returns the
first element of the list, without generics, you might have to write that function
signature differently for each potential type of data you might have in the list:

function getFirst(list: AStringList): string
function getFirst(list: ANumberList): number
function getFirst(list: AUserList): User

and so on. But there is a pattern here: the return value is always the same
type as the values that make up the list.

TypeScript allows us to use generics to represent the pattern, like this:

function getFirst(list: AList<T>): T

The angle brackets here represent the generic type and the T is just an iden-
tifier and could be anything (or at least, anything starting with a capital letter).
Single-letter identifiers are usually used, at least in part, to make a clear
distinction between generics and specific types.

The elements of a TypeScript array need to all be of the same type. If for some
reason you need a linear structure that has multiple types, first you should
think really hard about whether that is what you really want (most likely you
want a class instead). But if you do want something like that, TypeScript calls
that a tuple, and the syntax looks like this:

let myTuple: [string, number, string] = ["Jennifer", 8, "Lee"]

• Click HERE to purchase this book now. discuss

Understanding Basic TypeScript Types • 7

http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

If you access an element of the tuple within the declaration, in this case
myTuple[0], myTuple[1], or myTuple[2], then the return value is inferred to be the
type from that element’s tuple declaration. So myTuple[0] is a string and so on.
If for some reason you access an element with a higher index than the ele-
ments in the array, please don’t do that. TypeScript will let you do this, and
the inferred type of the return value is what TypeScript calls a union type,
meaning that the value is a member of one or more basic types.

Static vs. Dynamic Typing
At the most abstract level, there are two different strategies for dealing with
type information in a programing language: static or dynamic.

A language with static types requires that each variable be assigned a type
when it is first declared. The language expects to know what the type of a
value is and uses that information to constrain at compile time what values
can be assigned to that variable.

Different static languages have different requirements for how types are
assigned. Some languages, like Java, require the type of every variable to be
explicitly stated when the variable is declared. Other languages, like Type-
Script, allow for type inference. In TypeScript, if you assign a variable with a
typical JavaScript assignment like this:

let x = "hello"

TypeScript infers from the assignment that x is meant to be a string, and does
not require further information; you do not have to explicitly declare that x
is a string. Later, if we try to say x = 3, the TypeScript compiler will flag this
as an error because 3 is not a string.

Some static languages also infer that if there’s a type like string, there is a type
“array of string,” whereas in others you need to explicitly define the existence
of the array. Some languages require you to declare up front whether a value
can be null; others don’t.

On the other hand, a dynamically typed language, like Ruby or plain Java-
Script, assigns types at run time. In a dynamic language, you do not need to
ever declare the type of a variable in the code. The language checks type
information at run time using the current value of a variable at the moment
the language needs to determine behavior—for example, when a method is
called on a variable.

Types still have meaning in a dynamic language even if the type is not
explicitly assigned. In Ruby, a line of code like 2 + "3" will be an error, but the

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

error will happen at run time rather than compile time. In most dynamic
languages the code x + y will have different behavior if x and y are numbers
than if they are strings, and this behavior will be determined based on the
value of x each time the line of code is executed.

TypeScript turns JavaScript into a statically typed language. Whether or not
this is a good change is a surprisingly hard question to answer empirically.
Both the general case of static versus dynamic languages and the specific
case of TypeScript versus JavaScript are debated endlessly, with actual data
difficult to come by. Creating any kind of valid, reproducible, scientific evidence
about the general usefulness of programming languages is challenging.

There are a few points that are not disputed…much:

• A static language will catch errors in compilation that would otherwise
potentially remain uncaught.

• Static languages generally are more verbose than dynamic languages,
and there is sometimes a time cost to getting the compiler to agree that
what you want to do is valid. More modern static languages use type
inference to minimize the extra verbosity.

• Dynamic languages are generally more flexible and are usually considered
easier to write code in, at least for small programs.

• Static languages provide more information to code analysis tools, so editor
and tool support is easier to create. They also provide more meta-informa-
tion in general, which can be valuable as communication about the code
on larger teams.

The idea is that in a good static typing system, the benefits of tool support,
communication, and error prevention will outweigh the costs of yelling at the
compiler trying to get it to let you do what you want. In the general case of
static versus dynamic languages, I think there’s a lot of room for debate. In
the specific case of TypeScript versus JavaScript, I think there is good reason
to think there’s some benefit.

• Click HERE to purchase this book now. discuss

Static vs. Dynamic Typing • 9

http://pragprog.com/titles/nrclient2
http://forums.pragprog.com/forums/nrclient2

