
Extracted from:

Rails 5 Test Prescriptions
Build a Healthy Codebase

This PDF file contains pages extracted from Rails 5 Test Prescriptions, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Rails 5 Test Prescriptions
Build a Healthy Codebase

Noel Rappin

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC
Copy Editor: Candace Cunningham
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-250-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Where to Start?
“Where do I begin testing?” is one of the most common questions people have
when they start with TDD. Traditionally, my answer is a somewhat glib “start
anywhere.” While true, this is less than helpful.

A good option for starting a TDD cycle is to specify the initialization state of
the objects or methods under test. Another is the “happy path”—a single
representative example of the error-free version of the algorithm. Which
starting point you choose depends on how complicated the feature is. In this
case it’s sufficiently complex that I’ll start with the initial state and move to
the happy path. As a rule of thumb, if it takes more than a couple of steps
to define an instance of the application, I’ll start with initialization only.

Initializing objects is a good starting place for a TDD process.
Another good approach is to use the test to design what you
want a successful interaction of the feature to look like.

Prescription 3

This application is made up of projects and tasks. A newly created project
would have no tasks. What can you say about that brand-new project?

If there are no outstanding tasks, then there’s nothing left to do. A project
with nothing left to do is done. The initial state, then, is a project with no
tasks, and by that logic, the project is done. That’s not an inevitable decision;
you could specify that a project with no tasks is in some kind of empty state.

You don’t have any infrastructure in place yet, so you need to create the test
file yourself—we’re deliberately not using Rails generators right now. We’re
using RSpec, so the spec goes in the spec directory using a file name that is
parallel to the application code in the app directory. We think this is a test of
a project model, which would be in app/models/project.rb, so put the spec in
spec/models/project_spec.rb. We’re making very small design decisions here, and
so far these decisions are consistent with Rails conventions.

Here’s your spec of a project’s initial state:

basics/01/spec/models/project_spec.rb
require "rails_helper"Line 1

2

RSpec.describe Project do3

it "considers a project with no tasks to be done" do4

project = Project.new5

expect(project.done?).to be_truthy6

end7

8

end9

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/nrtest3/code/basics/01/spec/models/project_spec.rb
http://pragprog.com/titles/nrtest3
http://forums.pragprog.com/forums/nrtest3

Let’s talk about this spec at two levels: the logistics of the code in RSpec and
what this test is doing for you in your TDD process.

Compared to other testing libraries, RSpec shifts the tone from an “assertion,”
potentially implying already-implemented behavior, to an “expectation,”
implying future behavior. The RSpec version, arguably, is easier to read than
the Minitest version (though some strenuously dispute this). Later in this
chapter I’ll cover some other tricks RSpec uses to make expectations read
like natural language.

The project_spec.rb file uses four basic RSpec and Rails features:

• It requires rails_helper.
• It defines a test suite with RSpec.describe.
• It creates an RSpec example with it.
• It specifies a particular state with expect.

On the first line, the file rails_helper, which contains Rails-related setup common
to all tests, is required. (You’ll peek into that file in the next chapter, when I
talk about more Rails-specific test features.) The rails_helper file, in turn, requires
a file named spec_helper, which contains non-Rails RSpec setup.

The RSpec.describe method is used on line 3. In RSpec, the describe method defines
a suite of specs that can share a common setup. The first argument to describe
is either a class name or a string. The first argument documents what the
test suite is supposed to cover. You can then pass an optional number of
metadata arguments, of which there are none at the moment. The metadata
is used to specify additional behavior for the spec. Finally, describe expects a
block, which contains the test suite itself.

As you’ll see in a little bit, describe calls can be nested. By convention, the
outermost call typically has the name of the class under test. The outermost
describe call must be invoked as RSpec.describe, since that call starts outside of
RSpec’s control. Nested calls can use just plain describe, since RSpec manages
those calls internally.

The actual spec is defined with the it method, which takes an optional string
argument that documents the spec, an optional amount of metadata, and
then a block that is the body of the spec. The string argument is not used
internally to identify the spec—you can have multiple specs with the same
description string. Again, the metadata is used to adjust RSpec’s behavior.

RSpec also defines specify as an alias for it. Normally, you’d use it when the
method takes a string argument to give the spec a readable natural-language
name. (Historically the string argument started with “should,” so the name

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrtest3
http://forums.pragprog.com/forums/nrtest3

would be something like “it should be valid,” but that documentation pattern
is no longer considered a good practice.) For single-line tests in which a string
description is unnecessary, you can use specify to make the single line read
more clearly, such as this:

specify { expect(user.name).to eq("fred") }

On line 6 you write your first testable expectation about the code:

expect(project.done?).to be_truthy

The general form of an RSpec expectation is expect(actual_value).to(matcher), with
the parentheses around the matcher often omitted in practice. In this case,
the expectation would more formally read, expect(project.done?).to(be_truthy). A
matcher is an RSpec object that takes a value and determines if it matches
expectations based on some set of logic. In this example, the matcher is
be_truthy.

Let’s trace through what RSpec does with this expectation. First is the expect
call itself, expect(project.done?). RSpec defines the expect method, which takes in
any object as an argument and returns a special RSpec proxy object called
an ExpectationTarget.

The ExpectationTarget holds on to the object that was the argument to expect, and
itself responds to two messages: to and not_to. (Okay, technically three mes-
sages, since to_not exists as an alias.) Both to and not_to are ordinary Ruby
methods that expect a single argument, which needs to be an RSpec matcher.
There’s nothing special about an RSpec matcher; at base it’s just an object
that responds to a matches? method. There are several predefined matchers
and you can write your own.

In this case, be_truthy is a method defined by RSpec to return the BeTruthy
matcher. You could get the same behavior with

expect(project.done?).to(RSpec::BuiltIn::BeTruthy.new)

but you probably would agree that the idiomatic version is easier to read.

The ExpectationTarget is now holding on to two objects: the object being matched
(in this case, project.done?) and the matcher (be_truthy). When the spec is executed,
RSpec calls the matches? method on the matcher, with the object being matched
as an argument. If the expectation uses to, then the expectation passes if
matches? is true. If the expectation uses not_to, then it checks for a does_not_match?
method in the matcher. If there is no such method it falls back to passing if
matches? is false. This is shown in the following diagram.

• Click HERE to purchase this book now. discuss

Where to Start? • 7

http://pragprog.com/titles/nrtest3
http://forums.pragprog.com/forums/nrtest3

expect(project.done?).to be_truthy

expect(true).to be_truthy

<ExpectationTarget true>.to be_truthy

<ExpectationTarget true>.to(BeTruthy.new)

BeTruthy.new.matches?(true)

From an RSpec perspective, you’re creating an object and asserting an initial
condition. What are you doing from a TDD perspective, and why is this useful?

Small as it might seem, you’ve performed a little bit of design. You’re starting
to define the way parts of your system communicate with each other, and the
tests ensure the visibility of important information in your design.

This small test makes three claims about your program:

• There is a class called Project.
• You can query instances of that class as to whether they are done.
• A brand-new instance of Project qualifies as done.

This last assertion isn’t inevitable—you could say that you aren’t done unless
there is at least one completed task, but that’s a choice you’re making in the
application’s business logic.

RSpec Predefined Matchers
Before you run the tests, let’s take a quick look at RSpec’s basic matchers.
RSpec predefines a number of matchers. What follows is a list of the most
useful ones; you can find a full list online.2

expect(array).to all(matcher)
expect(actual).to be > expected # (also works with <, >=, <=, and ==)
expect(actual).to be_a(type)
expect(actual).to be_truthy
expect(actual).to be_falsy
expect(actual).to be_nil
expect(actual).to be_between(min, max)
expect(actual).to be_within(delta).of(expected)
expect { block }.to change(receiver, message, &block)
expect(actual).to contain_exactly(expected)
expect(range).to cover(actual_value)

2. https://relishapp.com/rspec/rspec-expectations/v/3-7/docs/built-in-matchers

• 8

• Click HERE to purchase this book now. discuss

https://relishapp.com/rspec/rspec-expectations/v/3-7/docs/built-in-matchers
http://pragprog.com/titles/nrtest3
http://forums.pragprog.com/forums/nrtest3

expect(actual).to eq(expected)
expect(actual).to exist
expect(actual).to have_attributes(key/value pairs)
expect(actual).to include(*expected)
expect(actual).to match(regex)
expect { block }.to output(value).to_stdout # also to_stderr
expect { block }.to raise_error(exception)
expect(actual).to satisfy { block }

Most of these mean what they appear to say. Some elaborations:

• The all matcher takes a different matcher as an argument and passes if
all elements of the array pass that internal matcher, as in expect([1, 2, 3]).to
all(be_truthy).

• The change matcher takes a block argument that passes if the value of
receiver.message changes when the block is evaluated.

• The contain_exactly matcher is true if the expected array and the actual array
contain the same elements, regardless of order.

• The satisfy matcher passes if the block evaluates to true.

• The matchers that take block arguments, output and raise_error, are for
specifying a side effect of the block’s execution—that it raises an error or
that it changes a different value—rather than the state of a particular
object.

• Click HERE to purchase this book now. discuss

Where to Start? • 9

http://pragprog.com/titles/nrtest3
http://forums.pragprog.com/forums/nrtest3

Any of these matchers except raise_error can be negated by using not_to instead
of using to.

RSpec allows you to compose matchers to express compound behavior, and
most of these matchers have alternate forms that allow them to read better
when composed. Composing matchers allows you to specify, for example,
multiple array values in a single statement and get useful error messages.

Here is a contrived example:

expect(["cheese", "burger"]).to contain_exactly(
a_string_matching(/ch/), a_string_matching(/urg/))

In this case a_string_matching is an alias for match, and the arguments to con-
tain_exactly are themselves matchers that must match individual elements of
the array to allow the entire compound matcher to pass.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrtest3
http://forums.pragprog.com/forums/nrtest3

