
Extracted from:

Programmer Passport: Elixir

This PDF file contains pages extracted from Programmer Passport: Elixir, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programmer Passport: Elixir

Bruce Tate

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: Corina Lebegioara
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-962-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—May 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

In our journey so far, we’ve learned to build and manipulate Elixir projects
and use primitive data types. The next few data types are for sequential data.
Languages like Ruby have one dominant way to represent sequential data,
the array. Elixir has multiple ways to represent sequential data. Tuples express
fixed-length sequential data, and lists represent variable-length sequential
data.

In this chapter, we’ll begin our exploration of tuples. Along the way, we’ll use
tools and techniques to create, inspect, and use them. As you might imagine,
central to those techniques will be functions and pattern matching. As usual,
we’ll explore each data structure in the console and we’ll also begin to roll
them up into advanced constructs.

Tuples, Deconstruction, and Pattern Matching
In Elixir, you use tuples to create lists of things with a fixed size. You represent
a tuple with curly braces surrounding elements with commas between:

iex(1)> place = {:stockholm, :sweden}
{:stockholm, :sweden}
iex(2)> origin = {0, 0}
{0, 0}
iex(3)> white = {0xff, 0xff, 0xff}
{255, 255, 255}
iex(4)> success = {:ok, "result"}
{:ok, "result"}
iex(5)> failure = {:error, 401}
{:error, 401}

Each of these examples is a tuple. A point is an iconic example of a tuple.
Erlang developers frequently use tuples to pair return codes with results.
Notice that the elements of a tuple aren’t necessarily the same type. For
example, in a result tuple from a function, the first element is usually an
atom describing the result, and the second element is the type the function
returns.

The most important part of representing tuples is that the position of an ele-
ment in a tuple determines its meaning. The parts of a place are city and country,
points are expressed as x and y, and so on.

Another ergonomic consideration for tuples has more to do with the computer
between your ears than the one running your code. Since we can’t label tuple
elements in any way, it’s hard to read code with tuples longer than two or
three elements, so keep them short!

Let’s look at tuples in more detail.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/passelixir
http://forums.pragprog.com/forums/passelixir

Exploring Tuples
Staying with IEx for a minute, let’s do our customary dive. Enter a line that
returns a tuple, and then get its info:

iex(6)> i
Term

{:error, 401}
Data type

Tuple
Reference modules

Tuple
Implemented protocols

IEx.Info, Inspect

As expected, the module for working with tuples is, well, Tuple. Let’s dive
deeper:

iex(7)> exports Tuple
append/2
delete_at/2
duplicate/2
insert_at/3
to_list/1

Usually, you can get a better sense for working with a data type by looking
at the exports of its primary module. Be careful, though. In this case, the
help will lead you astray. You might think that tuples are variable-length
constructs that you should transform with abandon. That’s a dangerous
assumption! Let’s look at what might happen if you did so.

Best Uses for Tuples
The implementation of a tuple in Elixir is one slice of memory of a fixed size
with no room for expansion. There are two significant ramifications of this
implementation:

• Longer short-lived tuples are tough on garbage collection. Creating and
freeing larger constructs breaks up memory.

• To change a tuple in any way, Elixir must create a whole new copy.

So, you should understand that changing or adding to tuples is not idiomatic
Elixir because it’s expensive to return a new, modified tuple. Tuples should
be created once in their final form and then left alone! Elixir will reward you
with better performance and friendlier code if you use tuples for structures
that are more permanent and shorter. You’ll be able to take better advantage
of pattern matching and your code will run more efficiently.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/passelixir
http://forums.pragprog.com/forums/passelixir

Let’s see a few ways to use pattern matching with tuples.

Pattern Matching
So far, we’ve used pattern matching with a whole atom or integer. We’re going
to broaden your repertoire a bit. Sometimes, you can use pattern matching
to deconstruct a complex data type. Let’s say you have a place you’ve chosen
to represent with a two-tuple, like this:

iex(1)> place = {:austin, :tx}
{:austin, :tx}

In Elixir, you can access the various elements in a tuple with pattern
matching, like this:

iex(2)> {city, state} = place
{:austin, :tx}
iex(3)> city
:austin
iex(4)> state
:tx

That’s nice! We access the city and state from within our place tuple. We can
also ignore either city or state, or even ignore both to match only tuples with
two elements, like this:

iex(5)> {city_name, _state_name} = place
{:austin, :tx}
iex(6)> city_name
:austin
iex(7)> {_, _} = place
{:austin, :tx}
iex(8)> {_, _} = {:some, :thing, :else}
** (MatchError) no match of right hand side value: {:some, :thing, :else}
...

This code works exactly as you’d expect. We don’t have to access the elements
of a tuple in this way. We can use the function called elem/2 to return a tuple
element with a zero-based index, like this:

iex(8)> elem(place, 0)
:austin
iex(9)> elem(place, 1)
:tx

That lays out the foundation. Let’s see how we might use pattern matching
in the context of a greater application.

• Click HERE to purchase this book now. discuss

Tuples, Deconstruction, and Pattern Matching • 5

http://pragprog.com/titles/passelixir
http://forums.pragprog.com/forums/passelixir

Functions and Code Organization
One of the central themes of our programs so far is that we package functions
that operate on like data together in a module. Let’s create a file called point.ex.
We’ll have functions on points in this module. We’ll strive to form functions
that take points as the first argument of our functions, and where possible,
our functions will return points as well.

Deconstruction in Function Heads
Let’s say we wanted to take a point in the form {x, y} and move it one unit to
the right. Knowing that elem(tuple, index) gives us an element of the tuple, we
might decide to write this bit of tedious code:

defmodule Point do
def right(point) do

x = elem(point, 0)
y = elem(point, 1)
{x + 1, y}

end
...

end

That’s a typical program that we might see in Java or Ruby. We can do better
in Elixir. We can deconstruct tuples in function heads, case statements, and
other Elixir constructs, like this:

defmodule Point do
def right({x, y}), do: {x+1, y}
def left({x, y}), do: {x-1, y}
def up({x, y}), do: {x, y-1}
def down({x, y}), do: {x, y+1}

def move({x1, y1}, {x2, y2}), do: {x1 + x2, y1 + y2}
end

Nice. We use the one-line function syntax that works well when we are
expressing a single thought. In the function head, we deconstruct the tuple,
picking off the x and y variables. Then, we return the updated point.

In move, we match on both arguments: an initial point and a vector defining
the difference in x and the difference in y.

These functions are no longer tedious because we can let the function head
do most of the work. Our code expresses code with a single thought on a
single line.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/passelixir
http://forums.pragprog.com/forums/passelixir

Along the way, I’ve said if you build modules with functions returning the
same kind of data first, you’ll be rewarded. Here’s some of the candy.

• Click HERE to purchase this book now. discuss

Functions and Code Organization • 7

http://pragprog.com/titles/passelixir
http://forums.pragprog.com/forums/passelixir

