
Extracted from:

Programmer Passport: OTP

This PDF file contains pages extracted from Programmer Passport: OTP, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programmer Passport: OTP

Bruce Tate

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: Vanya Wong
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-968-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Typical libraries are made up of simple functions. You use them by writing
calls to functions, and the library returns a result. The GenServer API is a
little different. A GenServer reverses the roles. These generic servers are fully
functioning servers with a few pieces missing. Your application implements
these missing pieces, called callbacks so rather than you calling functions
on the GenServer API, often the GenServer calls your functions instead.

As you might imagine, over the years, GenServers have evolved to handle
many different scenarios, so the various knobs and levers you can use to
tailor your applications can bewilder even the hardiest developer. Take heart.
When you look closely, several patterns emerge. This chapter is dedicated to
helping you understand the communication between a Genserver, your
application, and other processes. Let’s get started.

Anatomy of a GenServer
In the last chapter, we built a basic calculator, with and without a GenServer.
Let’s look back at that program. We’ll focus on a a couple major messages:
add and state:

def start(initial_state) do
spawn(fn -> run(initial_state) end)

end

def run(state) do
state
|> listen
|> run

end

def listen(state) do
receive do

{:add, number} ->
Core.add(state, number)

{:state, pid} ->
send(pid, {:state, state})
state

end
end

This program has the same basic shape of many other Elixir programs. There
are two major parts, the lifecycle management and the message process. Our
lifecycle management is a simple start function to start a process. The run and
listen messages represent the message loop.

Our server supports two different kinds of messages. The first kind, the add
message, simply receives a message and transforms the state. It’s a one-way

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/passotp
http://forums.pragprog.com/forums/passotp

message, a simple asyncronous message. It’s a cast in GenServer terminology.
The other kind, the state message, is a two-way call-response message, a call
in GenServer terminology.

A GenServer is a Template
You can think of a GenServer as a template for your code. You can fill in the
blanks with callbacks, bits of code you’ll implement in your own modules as
shown in the following figure.

Receive

Start

1 way
message:

Cast

Run loop

2 way
message:

Call

Return
Result

init

handle_cast

handle_call

GenServer API Your App:
Callbacks

This diagram gives you a good picture of what’s happening. When we work
with OTP, the GenServer library builds the generic lifecycle management and
message loops, leaving the rest to your application. The GenServer calls your
application’s callback functions at certain specific times.

Notice the structure of the GenServer. It has the same application components
as the calculator we built in the last chapter. It implements the lifecycle
management by spawning a process. We’ll cover the lifecycle in Chapter 3,
The Lifecycle and Supervision, on page ?. For now, let’s focus on the rest.

The Basic Callbacks
At each possible application integration, OTP will call your app. The most-
used callbacks are:

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/passotp
http://forums.pragprog.com/forums/passotp

init
called when a server starts a GenServer

handle_call
called when a server receives a two-way message

handle_cast
called when a server receives a one-way message

handle_info
called when a server process receives a generic message, a message not
formatted for OTP

This is the general shape your code will have when you’re using these call-
backs:

def init(state) do
custom-code-here
{:ok, initial_server_state}

end

def handle_call(message, from_pid, server_state) do
custom-code-here
{:reply, client_response, new_server_state}

end

def handle_cast(message, server_state) do
custom-code-here
{:noreply, new_server_state}

end

def handle_info(message, server_state) do
custom-code-here
{:noreply, new_server_state}

end

You’ll use init callback exists to do one or both of these two things:

• Call some code with a side effect before starting your application.
• Transform the inbound state into a state that’s friendlier for your

GenServer.

The handle_ callbacks are slightly more complicated. Each has its own signature,
but there are some common themes:

• the first argument is always the message
• the last argument is always the server’s state
• the response is always a standard response tuple

The handle_info callback is the simplest. It takes two arguments, the message
the server is receiving and the state of the server. It usually returns a :noreply

• Click HERE to purchase this book now. discuss

Anatomy of a GenServer • 5

http://pragprog.com/titles/passotp
http://forums.pragprog.com/forums/passotp

tuple, one that provides the new state for the GenServer. This state will be
passed to the next handle_ callback.

The handle_cast callback works almost exactly like a handle_info, but with one
major difference. The API gets the pid of the caller in the second argument,
the from field. Otherwise, it’s the same. You provide your custom code and
typically return a standard :noreply tuple.

The handle_call is a two-way synchronous API, so it needs to send a :reply tuple.
Usually, the reply tuple has the atom :reply, followed by the message to send
to the client, followed by the new state for the GenServer. This new state will
flow back into the next handle_ callback, and the circle of life continues!

This chapter will focus on making the most of those callbacks. You’ll learn
how Elixir calls them, and how your callbacks should respond. We’ll go off
the beaten path a bit to explore some of the optional bits of OTP that you
might miss if you’re not a careful reader. We’ll look at response tuples beyond
the typical use cases and how to find them.

We’re going to start our tour with the simplest message, one that OTP does
not create. Let’s explore the handle_info callback.

handle_info Processes Nonstandard Messages
You’ve seen a brief introduction of handle_info, but now we can fill in some more
details. Use the handle_info callback to send generic Elixir messages to a
GenServer. By generic, we mean messages that work with any generic Elixir
process, not necessarily a GenServer process.

Elixir uses the actor programming model, meaning each process has its own
message queue. You can use process primitives to send messages to any
Elixir process, as long as you have a pid.

Sometimes, you may want your GenServer to receive messages from Elixir or
Erlang process primitives rather than calls or casts built for OTP. A good
example is the Process.send_after/2 function. Let’s see how that works.

Send a Timed Message
As you might expect, Elixir and Erlang have several tools for sending messages
to any process based on some interval. The tools are easy to use and useful.
Let’s take a look at a few of them.

iex> Process.send_after(self(), :hi, 2000);
receive do m -> m end;
IO.puts("Done!")

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/passotp
http://forums.pragprog.com/forums/passotp

Done!
:ok

Process is Elixir’s module for dealing with any process, including GenServers.
The self() function returns the pid for our own process. As is customary, the
first argument to functions in Process will represent a process. We chase that
argument with the message, :hi, and a duration in milliseconds.

A similar message, :timer.send_interval, sends a message after a specified
period of time to a pid, like this:

iex(3)> :timer.send_interval(1000, self(), :tick)
{:ok, {:interval, #Reference<0.1649946897.170917896.30200>}}
iex(4)> flush
:tick
:tick
:ok
iex(5)> flush
:tick
:tick
:ok

We ask the timer, in another process, to send a message :tick at one-second
intervals. Then, we flush the message buffer a couple of times to see what’s
in the message box. After running this short program, it would be good to
exit the console to prevent your mailbox from being flooded with :tick messages!

Both of these tools are interesting to OTP programmers, but neither the :tick
nor the :hi message was formatted for OTP. It turns out that handle_info is built
especially for retrieving generic messages like these.

• Click HERE to purchase this book now. discuss

handle_info Processes Nonstandard Messages • 7

http://pragprog.com/titles/passotp
http://forums.pragprog.com/forums/passotp

