
Extracted from:

Programmer Passport: OTP

This PDF file contains pages extracted from Programmer Passport: OTP, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programmer Passport: OTP

Bruce Tate

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: Vanya Wong
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-968-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

As we explore OTP together, we’ve been slowly working through the API. First,
we built a tiny calculator service without OTP. In the last chapter, we focused
on the GenServer API, and the communication between processes with mes-
sages, calls, and casts. In this chapter, we’re going to shift gears to the second
major part of OTP, the supervisor. You may be asking yourself, “Why name
this chapter after lifecycles if we’re describing a supervisor?”

Let’s answer this question in a roundabout way. Open up an IEx session.
Next, type h Supervisor, and look at the names of concepts in the API. Your
system may vary, but mine has headings in gold and API names emphasized
in blue, as in the following figure.

A quick browse will show you all you need to know. The headings in the
documentation tell the story. The heading shown in the figure is “Start and
shutdown”. That one clearly has lifecycle terms, but other major headings
are too. Among them are the following:

• Shutdown
• Child spec
• start_link/2, init/2, and strategies
• Exit reasons and restarts

Also, look at the blue words. On one page, you might find start, init, and start_link.
On other pages, you might find terminate, kill, and shutdown. There are terms for
children, restarts, and policies describing those things. If you want to
understand OTP, think of a supervisor as a process server that manages a
list of processes we call children. That term is yet another lifecycle word.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/passotp
http://forums.pragprog.com/forums/passotp

In this chapter, we’re going to build a mix project from scratch. We’ll dig into
the tools you need to build your own supervisor, and we’ll plug in some chil-
dren.

Along the way, notice that everything we do is related to a few main concepts.
A supervisor must start a child, and shut down children. Supervisors also
detect and respond to failure. There are plenty of knobs and levers you can
manipulate to control this process, but in the end, you’ll find that everything
we do boils down to these basic ideas.

As usual, the best way to understand what’s happening is to dig into some
code, so let’s get busy!

The Primitive Mechanisms
We’ll build our intuition for what’s happening within a supervisor by playing
with the underlying primitives it’s built on. Let’s begin our exploration inside
IEx, before moving into our own program. First, we’ll create some unreliable
code:

iex(1)> problem = fn -> raise "oh snap" end
#Function<20.128620087/0 in :erl_eval.expr/5>
iex(2)> problem.()
** (RuntimeError) oh snap

This code is reliably unreliable, which is perfect for our purposes. Let’s simu-
late a failure by firing up problem in its own process:

iex(2)> spawn problem
#PID<0.107.0>
iex(3)>
11:11:48.957 [error] Process #PID<0.107.0> raised an exception
** (RuntimeError) oh snap

(stdlib) erl_eval.erl:678: :erl_eval.do_apply/6

That code did exactly what we expect. The process failed and we saw the
results in the IEx console. Now, we can simulate a failure whenever we need
one.

Linked Processes Maintain Consistency
Now, let’s do the same thing, but we’ll link the spawned process to our own:

iex(4)> spawn_link problem
** (EXIT from #PID<0.103.0>) shell process exited with reason:
an exception was raised:

** (RuntimeError) oh snap
(stdlib) erl_eval.erl:678: :erl_eval.do_apply/6

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/passotp
http://forums.pragprog.com/forums/passotp

11:12:03.188 [error] Process #PID<0.110.0> raised an exception
** (RuntimeError) oh snap

(stdlib) erl_eval.erl:678: :erl_eval.do_apply/6

Interactive Elixir (1.8.1) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

The function spawn_link starts a process, and links the new process to the one
that spawns it. When our unreliable process fails, the IEx console also
crashes because it’s linked! Sometimes, linking processes in this way helps
us preserve consistency by letting us bring down two related processes at
once in the event of a failure.

Notice the line number for IEx. It crashed and restarted! What’s happening
under the covers is that IEx is actually running in OTP. It has a supervisor
that detects failure. When the supervisor sees that our IEx session has
crashed, it diligently restarts IEx.

That means our supervisor can’t be using spawn_link. It’s actually using
another version of spawn, called spawn_monitor.

Spawn with Monitor Allows Control
Sometimes one process wants to know about the fate of others. Elixir uses
Process.monitor/1 for that purpose. The spawn_monitor is a convenience method
that lets us spawn and monitor a process at the same time. Let’s use it now:

iex(1)> problem = fn -> raise "oh snap" end
#Function<20.128620087/0 in :erl_eval.expr/5>
iex(2)> {pid, ref} = spawn_monitor problem
{#PID<0.127.0>, #Reference<0.4055542344.2876506120.76641>}

Since our IEx session crashed, we need to create the problem code again.
Then we create a monitored process. Notice we get a tuple back. The first
element of the tuple is a process ID. The second is a reference. Elixir references
are globally unique, and this one will uniquely identify our process when
Elixir returns an error.

Now, we can see that our process is no longer alive:

iex(3)> Process.alive? pid
false

We also got notified that the process is down! There’s a message waiting for
us in the process mailbox. Let’s get it:

iex(4)> receive do m -> m end
{:DOWN, #Reference<0.4055542344.2876506120.76641>, :process,
#PID<0.127.0>,

• Click HERE to purchase this book now. discuss

The Primitive Mechanisms • 5

http://pragprog.com/titles/passotp
http://forums.pragprog.com/forums/passotp

{%RuntimeError{message: "oh snap"},
[{:erl_eval, :do_apply, 6, [file: 'erl_eval.erl', line: 678]}]}}

That’s the message! We get back a tuple describing the crash. You can read
more about monitors and the resulting tuples in the hex monitor documenta-
tion1.

This is the mechanism that supervisors use to detect failure. With firmly
established knowledge for what’s happening under the hood, let’s move on
to a project that uses OTP to do the hard work of managing the lifecycles of
our programs.

OTP Supervisors Manage GenServer Lifecycles
Let’s create a new project, one with a supervisor. We’ll call this app super_duper:

[otp] ➔ mix new super_duper --sup
...
* creating lib/super_duper/application.ex
...

[otp] ➔ cd super_duper/

Notice the list of files mix created for you. One of them is application.ex. That’s
your supervisor.

Application is a Supervisor Template
Just as the GenServer module is a template for a generic server, the Application
module is a template for a supervisor. The documentation says, “Applications
are the idiomatic way to package software in Erlang/OTP.” When you start
an application, you’re really starting a supervisor, and that supervisor is
starting the GenServers that make up the rest of your code base.

Your application might have other projects it depends on, and you can start
these within this SuperDuper.Application module.

This is what it looks like, without the comments:

defmodule SuperDuper.Application do
use Application

def start(_type, _args) do
children = []

opts = [strategy: :one_for_one, name: SuperDuper.Supervisor]
Supervisor.start_link(children, opts)

end

1. https://hexdocs.pm/elixir/Process.html#monitor/1

• 6

• Click HERE to purchase this book now. discuss

https://hexdocs.pm/elixir/Process.html#monitor/1
http://pragprog.com/titles/passotp
http://forums.pragprog.com/forums/passotp

end

We get the usual use Application ceremony. That command executes Applica-
tion.__using__, which establishes SuperDuper.Application as a module that implements
the Application behaviour. As you might expect, this behaviour has various
callback functions2 for starting and stopping applications.

The main callback is start. Ours establishes an empty list of children. This is
where we’ll add dependent services later on. Then, we start the server with
Supervisor.start, passing our children and options including a name and a policy
for restarting the children in our list. We’ll talk about these policies later.

2. https://hexdocs.pm/elixir/Application.html#callbacks

• Click HERE to purchase this book now. discuss

OTP Supervisors Manage GenServer Lifecycles • 7

https://hexdocs.pm/elixir/Application.html#callbacks
http://pragprog.com/titles/passotp
http://forums.pragprog.com/forums/passotp

