
Extracted from:

Build a Weather Station with
Elixir and Nerves

Visualize Your Sensor Data with
Phoenix and Grafana

This PDF file contains pages extracted from Build a Weather Station with Elixir
and Nerves, published by the Pragmatic Bookshelf. For more information or to

purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Build a Weather Station with
Elixir and Nerves

Visualize Your Sensor Data with
Phoenix and Grafana

Alexander Koutmos
Bruce A. Tate

Frank Hunleth

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: L. Sakhi MacMillan
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-902-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Managing the Life Cycle
The application.ex file is often the first module called by Elixir within a new
application. It implements a supervisor and is a convenient point for attaching
initial startup features. For the purposes of this project, we also need to start
the sensors and server publisher services (we’ll tackle the publisher in the
next chapter). Most of the configuration will go in the application.ex file as
arguments to each of the new GenServers we start.

Setting up the Supervision Tree
Open up lib/sensor_hub/application.ex in the sensor_hub subproject, and let’s fill out
the small functions that will start the pieces of the firmware project. Let’s
begin with the children/1 function (specifically the version that pattern matches
on _target):

defmodule SensorHub.Application do
...

def children(_target) do
The sensors will fail on the host so let's
only start them on the target devices.
[
{SGP30, []},
{BMP280, [i2c_address: 0x77, name: BMP280]},
{VEML6030, %{}}

]
end

...
end

This code should look slightly familiar. If you recall from our IEx sessions,
when we started the sensor GenServers manually, we had to pass certain
options to their start_link/1 functions for them to work properly. Instead of doing
that ourselves manually on application start, we’ll let our application super-
visor take care of that now.

Let’s also update our start/2 callback and ensure that it looks like so:

defmodule SensorHub.Application do
...

@impl true
def start(_type, _args) do

See https://hexdocs.pm/elixir/Supervisor.html
for other strategies and supported options
opts = [strategy: :one_for_one, name: SensorHub.Supervisor]

children = children(target())

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/passweather
http://forums.pragprog.com/forums/passweather

Supervisor.start_link(children, opts)
end

...
end

As we can see here, our supervisor is provided the list of child processes,
depending on what target we’re running on. If you look at the Nerves-gener-
ated code, the version of children/1 that matches on :host has no child processes,

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/passweather
http://forums.pragprog.com/forums/passweather

while our Raspberry Pi target contains all of our sensors (this value is provided
by the target/0 function). This means that any time we run this project on our
workstation, we won’t be starting up any of our sensor GenServers, which
makes sense given that the sensors are only supposed to run when the project
is running on our Raspberry Pi.

With our application life-cycle code set up in our supervisor, it’s time to test
it all out and make sure that things start up and behave as expected.

Trying It Out
With our code up-to-date, it’s time to create an up-to-date firmware via mix
firmware, upload the firmware with mix upload hub.local, and then connect to the
device with ssh hub.local. After we connect to the device, we can run the following
commands to introspect the device and ensure that our sensor GenServers
are up and running:

iex(1)> Supervisor.which_children(SensorHub.Supervisor)
[

{VEML6030, #PID<0.1287.0>, :worker, [VEML6030]},
{BMP280, #PID<0.1286.0>, :worker, [BMP280]},
{SGP30, #PID<0.1285.0>, :worker, [SGP30]}

]

iex(2)> alias SensorHub.Sensor
SensorHub.Sensor

iex(3)> BMP280 |> Sensor.new() |> Sensor.measure()
%{

altitude_m: 77.29732484024902,
pressure_pa: 99087.08904119114,
temperature_c: 25.63860611162145

}

By running the which_children/1 call in IEx, we’re able to see what child processes
are under the provided supervisor. As you can see, our Nerves application
started up all of the GenServers that were specified in the application.ex file, and
you were even able to interact with the BMP280 sensor to get sensor data.

Your Turn
In this chapter, we took what we learned from the previous sections and put
it all together to create a Nerves application that starts up by itself, initializes
all of the sensor hardware, and refreshes sensor measurements automatically.

• Click HERE to purchase this book now. discuss

Your Turn • 7

http://pragprog.com/titles/passweather
http://forums.pragprog.com/forums/passweather

What You Built
You started the chapter by creating the veml6030 subproject and creating the
stateless components to work with your light sensor. These stateless compo-
nents were derived from the VEML6030 spec sheet and were needed to con-
figure and communicate with the sensor. Once you had these things in place,
you added a stateful element to the mix—namely the VEML6030 GenServer
module. This GenServer would regularly poll the sensor and store the results
in its state. You could then read from this state at any point to get an up-to-
date reading on the ambient light in the room.

After creating the veml6030 sensor subproject, you were able to lean on the
Elixir and Nerves ecosystem to pull down libraries for working with the addi-
tional weather station sensors. You then configured your application supervi-
sion tree to start up all of your sensors on device init, and added some glue
code to make it easy to fetch data from all of the sensors.

Why It Matters
This chapter walked through exactly how to structure your Nerves applications
so that they are bulletproof and production ready. While SSHing into devices
and configuring them ad hoc is acceptable for development and experimenta-
tion, we need to leverage the OTP available to us to create a reliable and fault-
tolerant IoT experience. By using GenServers and Supervisors, we were able
to accomplish just that.

What’s Next
Now that your Nerves application is almost complete, it’s time to set up a
Phoenix REST API so that you can publish and persist your sensor data to
PostgreSQL+TimescaleDB. Once you have an HTTP server up and running,
you’ll revisit your Nerves application and add a data publisher subproject to
the poncho project, similarly to how you created the veml6030 subproject.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/passweather
http://forums.pragprog.com/forums/passweather

