Extracted from:

Build a Weather Station with
Elixir and Nerves

Visualize Your Sensor Data with
Phoenix and Grafana

This PDF file contains pages extracted from Build a Weather Station with Elixir
and Nerves, published by the Pragmatic Bookshelf. For more information or to
purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

The

Przigrmatjc
ogramimers

Build a Weather
Station with Elixir
and Nerves

Visualize Your Sensor Data with
Phoenix and Grafana

"
9 a L

2 oo @) "Koutmos,

- ot) - — - ~
""" Bruce A. Tate, and Frank Hunleth
edited by Jacquelyn Carter

Build a Weather Station with
Elixir and Nerves

Visualize Your Sensor Data with
Phoenix and Grafana

Alexander Koutmos
Bruce A. Tate
Frank Hunleth

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin

COO: Janet Furlow

Managing Editor: Tammy Coron
Development Editor: Jacquelyn Carter
Copy Editor: L. Sakhi MacMillan
Layout: Gilson Graphics

Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-902-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Time-Series Sensor Hub

To experience the robustness of Elixir in an IoT setting, you’'ll be leveraging
the Nerves framework and its many tools to build a sensor hub weather sta-
tion. The IoT sensor hub will collect weather data at a regular interval and
then publish that data to a Phoenix RESTful API. So that you can retrieve
this weather data for later review, your Phoenix server will be persisting that
sensor weather data into PostgreSQL.

While we could use a vanilla install of PostgreSQL for this project, the nature
of our data is time-series, and it would be best if we leverage a time-series
database. Specifically, it will be far more performant if we queried our sensor
data from a persistent datastore that supports time-series data as a first class
citizen. Luckily for us, a PostgreSQL extension solves this exact problem and
it’s called TimescaleDB.

By leveraging the TimescaleDB extension, you get all the benefits of using
PostgreSQL as well as utilities for dealing specifically with time-series data.
Under the hood, the TimescaleDB extension will automatically partition your
data by time and allow you to interact with this data as if it were all contained
within one database table. The database table that you interact with is also
known as a hypertable and is merely a facade for all of the time-sliced parti-
tions.' This takes all the administrative overhead out of manually partitioning
tables and creating new partitions as days/weeks roll over in the database.
From the Elixir side of things, given that we are still interacting with a Post-
greSQL database, all of our database interactions still take place using Ecto.

As you’ll see from working on the project throughout this book, the pairing
of a time-series database with an IoT sensor hub is a very powerful technology
stack. For this particular project, we’ll be connecting to a wireless LAN and
will be publishing the measurements to a server running on the LAN. While
in a real-world setting these 10T devices may find themselves in remote loca-
tions well out of reach of a WiFi network, the proposed setup is suitable for
this application.

If you're interested in building Nerves projects that run in remote environments,
be sure to check out the VintageNetMobile” and VintageNet@QMI® projects to see
how you can leverage cellular modems from your embedded devices.

1. https://docs.timescale.com/latest/introduction/architecture

2. https://github.com/nerves-networking/vintage_net_mobile

3. https://github.com/nerves-networking/vintage_net_gmi

« Click HERE to purchase this book now. discuss

https://docs.timescale.com/latest/introduction/architecture
https://github.com/nerves-networking/vintage_net_mobile
https://github.com/nerves-networking/vintage_net_qmi
http://pragprog.com/titles/passweather
http://forums.pragprog.com/forums/passweather

2

In addition to partitioning your data efficiently by time, TimescaleDB also allows you
to partition your data by space. What this means is that you can tell TimescaleDB
to further partition each hypertable by an additional dimension to extract even more
performance out of TimescaleDB. This additional dimension is derived from your
table’s schema and can be any other column aside from the timestamp column that
you used to create the hypertable.

Leveraging space partitioning can be useful when you have a dataset that is well
suited for time and space partitioning, but it can also decrease performance if the
dataset isn’t well suited.? In the context of IoT applications, it may be useful to space
partition inbound data by the device that it was published from or by a geographical
region where multiple devices have been deployed to.

a. https://docs.timescale.com/timescaledb/latest/how-to-guides/hypertables/best-practices/#space-partitions

.
Laying Out the Architecture

Given that there are a number of components to this project (a time-series
database, a nerves sensor hub, and a Phoenix back-end API) and they all
operate at different layers, it would be beneficial to first visualize all the parts
and how they interact with one another. Let’s take a look at the architecture
diagram on page 3 and break down how the various components will work

with one another.

At the bottom left of the diagram you’ll notice that we have entries for Nerves
Weather Stations 1, 2, and N, which denotes that we can arbitrarily scale our
IoT fleet up and down as the need arises. In a real-world application, you may
have a vast number of sensor hubs deployed, all of which are reporting back
to your server-side application. Thus the Phoenix API acts as the gateway for
all of the sensor data collected by your IoT devices.

Between our fleet of IoT sensor hubs and our Phoenix API is a network
interface. For the weather station application that we’ll be building throughout
this book, that network interface is the WiFi antenna built into the Raspberry
Pi, and our home LAN. For production use, this network interface could be
ethernet or LTE, depending on where your IoT device is deployed to.

Once our data is pushed from our Nerves 10T devices to our Phoenix API (via
HTTP), our server-side application will persist that data into our TimescaleDB-

4. https://github.com/nerves-networking/vintage_net mobile

« Click HERE to purchase this book now. discuss

https://docs.timescale.com/timescaledb/latest/how-to-guides/hypertables/best-practices/#space-partitions
https://github.com/nerves-networking/vintage_net_mobile
http://pragprog.com/titles/passweather
http://forums.pragprog.com/forums/passweather

Laying Out the Architecture ¢ 3

enabled PostgreSQL instance. One of the reasons that TimescaleDB is a good
fit for the problem at hand is that it deals well with high-cardinality data.’

What Is Cardinality?
Cardinality, as it pertains to the data stored in a database, is a
measure of how many different values are present for a particular
field or column. For example, if you're using UUIDs to capture a
user’s id, you will have high cardinality because each user will

have a unique ID. In other words, if you have 50,000 users, you
o will have 50,000 possible values for the id column.

On the other hand, if you have have a column called user type, for
example, and that is an enum with possible values of basic, admin,
and super_user, you would have low cardinality for the user type col-
umn. The reason for this is that even if you have 50,000 users
stored in your database table, user_type can only be one of three
possible values.

After our Phoenix application has persisted our data into PostgreSQL, its
responsibilities with regards to that data are effectively over. We could possibly
extend our Phoenix application to return this data via a RESTful API or even
present the time-series data via a LiveView SVG chart.® But in the spirit of

5. https://blog.timescale.com/blog/what-is-high-cardinality-how-do-time-series-databases-influxdb-timescaledb-

« Click HERE to purchase this book now. discuss

https://blog.timescale.com/blog/what-is-high-cardinality-how-do-time-series-databases-influxdb-timescaledb-compare
https://blog.timescale.com/blog/what-is-high-cardinality-how-do-time-series-databases-influxdb-timescaledb-compare
https://github.com/mindok/contex
http://pragprog.com/titles/passweather
http://forums.pragprog.com/forums/passweather

o4

getting things up and running quickly, we’ll lean on the powerful yet simple
data visualization tool Grafana.’

Grafana has the ability to connect to a wide array of data sources like
Prometheus,® InfluxDB,’ and even PostgreSQL+TimescaleDB.'"* This will allow
us to host our own instance of Grafana (via Docker), which we can then
interact with, to visualize all of our time-series data as it is persisted into our
database.

With a high-level understanding of how all the pieces fit together and how
they communicate with one another, it’s time to dive deeper into the Nerves
side of things and see how you’ll be structuring your Nerves project.

7. https://grafana.com/

afana/latest/datasources/postgres/

« Click HERE to purchase this book now. discuss

https://grafana.com/
https://prometheus.io
https://www.influxdata.com
https://grafana.com/docs/grafana/latest/datasources/postgres/
http://pragprog.com/titles/passweather
http://forums.pragprog.com/forums/passweather

