
Extracted from:

Seven Concurrency Models in Seven Weeks
When Threads Unravel

This PDF file contains pages extracted from Seven Concurrency Models in Seven
Weeks, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Seven Concurrency Models in Seven Weeks
When Threads Unravel

Paul Butcher

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Bruce A. Tate (series editor)
Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-65-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2014

http://pragprog.com
rights@pragprog.com

CHAPTER 5

Actors
An actor is like a rental car—quick and easy to get a hold of when you want
one, and if it breaks down you don’t bother trying to fix it; you just call the
rental company and another one is delivered to you.

The actor model is a general-purpose concurrent programming model with
particularly wide applicability. It targets both shared- and distributed-memory
architectures, facilitates geographical distribution, and provides especially
strong support for fault tolerance and resilience.

More Object-Oriented than Objects
Functional programming avoids the problems associated with shared mutable
state by avoiding mutable state. Actor programming, by contrast, retains
mutable state but avoids sharing it.

An actor is like an object in an object-oriented (OO) program—it encapsulates
state and communicates with other actors by exchanging messages. The dif-
ference is that actors run concurrently with each other and, unlike OO-style
message passing (which is really just calling a method), actors really commu-
nicate by sending messages to each other.

Although the actor model is a general approach to concurrency that can be
used with almost any language, it’s most commonly associated with Erlang.1

We’re going to cover actors in Elixir,2 a relatively new language that runs on
the Erlang virtual machine (BEAM).

Like Clojure (and Erlang), Elixir is an impure, dynamically typed functional
language. If you’re familiar with Java or Ruby, you should find it easy enough

1. http://www.erlang.org/
2. http://elixir-lang.org/

• Click HERE to purchase this book now. discuss

http://www.erlang.org/
http://elixir-lang.org/
http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

to read. This isn’t going to be an Elixir tutorial (this is a book about concur-
rency, after all, not programming languages), but I’ll introduce the important
language features we’re using as we go along. There may be things you just
have to take on faith if you’re not already familiar with the language—I recom-
mend Programming Elixir [Tho14] if you want to go deeper.

In day 1 we’ll see the basics of the actor model—creating actors and sending
and receiving messages. In day 2 we’ll see how failure detection, coupled with
the “let it crash” philosophy, allows actor programs to be fault-tolerant.
Finally, in day 3 we’ll see how actors’ support for distributed programming
allows us to both scale beyond a single machine and recover from failure of
one or more of those machines.

Day 1: Messages and Mailboxes
Today we’ll see how to create and stop processes, send and receive messages,
and detect when a process has terminated.

Joe asks:

Actor or Process?
In Erlang, and therefore Elixir, an actor is called a process. In most environments a
process is a heavyweight entity that consumes lots of resources and is expensive to
create. An Elixir process, by contrast, is very lightweight—lighter weight even than
most systems’ threads, both in terms of resource consumption and startup cost.
Elixir programs typically create thousands of processes without problems and don’t
normally need to resort to the equivalent of thread pools (see Thread-Creation Redux,
on page ?).

Our First Actor
Let’s dive straight in with an example of creating a simple actor and sending
it some messages. We’re going to construct a “talker” actor that knows how
to say a few simple phrases in response to messages.

The messages we’ll be sending are tuples—sequences of values. In Elixir, a
tuple is written using curly brackets, like this:

{:foo, "this", 42}

This is a 3-tuple (or triple), where the first element is a keyword (Elixir’s key-
words are very similar to Clojure’s, even down to the initial colon syntax), the
second a string, and the third an integer.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

Here’s the code for our actor:

Actors/hello_actors/hello_actors.exs
defmodule Talker do

def loop do
receive do
{:greet, name} -> IO.puts("Hello #{name}")
{:praise, name} -> IO.puts("#{name}, you're amazing")
{:celebrate, name, age} -> IO.puts("Here's to another #{age} years, #{name}")

end
loop

end
end

We’ll pick through this code in more detail soon, but we’re defining an actor
that knows how to receive three different kinds of messages and prints an
appropriate string when it receives each of them.

Here’s code that creates an instance of our actor and sends it a few messages:

Actors/hello_actors/hello_actors.exs
pid = spawn(&Talker.loop/0)
send(pid, {:greet, "Huey"})
send(pid, {:praise, "Dewey"})
send(pid, {:celebrate, "Louie", 16})
sleep(1000)

First, we spawn an instance of our actor, receiving a process identifier that
we bind to the variable pid. A process simply executes a function, in this case
the loop() function within the Talker module, which takes zero arguments.

Next, we send three messages to our newly created actor and finally sleep for
a while to give it time to process those messages (using sleep() isn’t the best
approach—we’ll see how to do this better soon).

Here’s what you should see when you run it:

Hello Huey
Dewey, you're amazing
Here's to another 16 years, Louie

Now that we’ve seen how to create an actor and send messages to it, let’s see
what’s going on under the hood.

Mailboxes Are Queues
One of the most important features of actor programming is that messages
are sent asynchronously. Instead of being sent directly to an actor, they are
placed in a mailbox:

• Click HERE to purchase this book now. discuss

Day 1: Messages and Mailboxes • 7

http://media.pragprog.com/titles/pb7con/code/Actors/hello_actors/hello_actors.exs
http://media.pragprog.com/titles/pb7con/code/Actors/hello_actors/hello_actors.exs
http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

HelloActors

Celebrate:
Louie, 16

Praise:
Dewey
Greet:
Huey

Mailbox

Talker

This means that actors are decoupled—actors run at their own speed and
don’t block when sending messages.

An actor runs concurrently with other actors but handles messages sequen-
tially, in the order they were added to the mailbox, moving on to the next
message only when it’s finished processing the current message. We only
have to worry about concurrency when sending messages.

Receiving Messages
An actor typically sits in an infinite loop, waiting for a message to arrive with
receive and then processing it. Here’s Talker’s loop again:

Actors/hello_actors/hello_actors.exs
def loop do

receive do
{:greet, name} -> IO.puts("Hello #{name}")
{:praise, name} -> IO.puts("#{name}, you're amazing")
{:celebrate, name, age} -> IO.puts("Here's to another #{age} years, #{name}")

end
loop

end

This function implements an infinite loop by calling itself recursively. The
receive block waits for a message and then uses pattern matching to work out
how to handle it. Incoming messages are compared against each pattern in
turn—if a message matches, the variables in the pattern (name and age) are
bound to the values in the message and the code to the right of the arrow (->)
is executed. That code prints a message constructed using string interpola-
tion—the code within each #{…} is evaluated and the resulting value inserted
into the string.

The code on page 7 sleeps for a second to allow messages to be processed
before exiting. This is an unsatisfactory solution—we can do better.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/pb7con/code/Actors/hello_actors/hello_actors.exs
http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

Joe asks:

Won’t Infinite Recursion Blow Up the Stack?
You might be worried that a function like Talker’s loop(), which recurses infinitely, would
result in the stack growing forever. Happily, there’s no need to worry—in common
with many functional languages (Clojure being a prominent exception—see What Is
Loop/Recur?, on page ?), Elixir implements tail-call elimination. Tail-call elimination,
as its name suggests, replaces a recursive call with a simple jump if the last thing
the function does is call itself.

Linking Processes
We need two things to be able to shut down cleanly. First we need a way to
tell our actor to stop when it’s finished processing all the messages in its
queue. And second, we need some way to know that it has done so.

We can achieve the first of these by having our actor handle an explicit
shutdown message (similar to the poison pill we saw in the code on page ?):

Actors/hello_actors/hello_actors2.exs
defmodule Talker do

def loop do
receive do
{:greet, name} -> IO.puts("Hello #{name}")
{:praise, name} -> IO.puts("#{name}, you're amazing")
{:celebrate, name, age} -> IO.puts("Here's to another #{age} years, #{name}")
{:shutdown} -> exit(:normal)➤

end
loop

end
end

And second, we need a way to tell that it has exited, which we can do by setting
:trap_exit to true and linking to it by using spawn_link() instead of spawn():

Actors/hello_actors/hello_actors2.exs
Process.flag(:trap_exit, true)
pid = spawn_link(&Talker.loop/0)

This means that we’ll be notified (with a system-generated message) when
the spawned process terminates. The message that’s sent is a triple of this
form:

{:EXIT, pid, reason}

All that remains is to send the shutdown message and listen for the exit
message:

• Click HERE to purchase this book now. discuss

Day 1: Messages and Mailboxes • 9

http://media.pragprog.com/titles/pb7con/code/Actors/hello_actors/hello_actors2.exs
http://media.pragprog.com/titles/pb7con/code/Actors/hello_actors/hello_actors2.exs
http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

Actors/hello_actors/hello_actors2.exs
send(pid, {:greet, "Huey"})
send(pid, {:praise, "Dewey"})
send(pid, {:celebrate, "Louie", 16})
send(pid, {:shutdown})➤

receive do➤

{:EXIT, ^pid, reason} -> IO.puts("Talker has exited (#{reason})")➤

end➤

The ̂ (caret) in the receive pattern indicates that instead of binding the second
element of the tuple to pid, we want to match a message where the second
element has the value that’s already bound to pid.

Here’s what you should see if you run this new version:

Hello Huey
Dewey, you're amazing
Here's to another 16 years, Louie
Talker has exited (normal)

We’ll talk about linking in much more detail tomorrow.

Stateful Actors
Our Talker actor is stateless. It’s tempting to think that you would need
mutable variables to create a stateful actor, but in fact all we need is recursion.
Here, for example, is an actor that maintains a count that increments each
time it receives a message:

Actors/counter/counter.ex
defmodule Counter do

def loop(count) do
receive do
{:next} ->

IO.puts("Current count: #{count}")
loop(count + 1)

end
end

end

Let’s see this in action in Interactive Elixir, iex (the Elixir REPL):

iex(1)> counter = spawn(Counter, :loop, [1])
#PID<0.47.0>
iex(2)> send(counter, {:next})
Current count: 1
{:next}
iex(3)> send(counter, {:next})
{:next}
Current count: 2

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/pb7con/code/Actors/hello_actors/hello_actors2.exs
http://media.pragprog.com/titles/pb7con/code/Actors/counter/counter.ex
http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

iex(4)> send(counter, {:next})
{:next}
Current count: 3

We start by using the three-argument form of spawn(), which takes a module
name, the name of a function within that module, and a list of arguments, so
that we can pass an initial count to Counter.loop(). Then, as we expect, it prints a
different number each time we send it a {:next} message—a stateful actor with
not a mutable variable in sight. And furthermore, this is an actor that can
safely access that state without any concurrency bugs, because messages are
handled sequentially.

• Click HERE to purchase this book now. discuss

Day 1: Messages and Mailboxes • 11

http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

