
Extracted from:

Seven Concurrency Models in Seven Weeks
When Threads Unravel

This PDF file contains pages extracted from Seven Concurrency Models in Seven
Weeks, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Seven Concurrency Models in Seven Weeks
When Threads Unravel

Paul Butcher

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Bruce A. Tate (series editor)
Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-65-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2014

http://pragprog.com
rights@pragprog.com

CHAPTER 1

Introduction
Concurrent programming is nothing new, but it’s recently become a hot topic.
Languages like Erlang, Haskell, Go, Scala, and Clojure are gaining mindshare,
in part thanks to their excellent support for concurrency.

The primary driver behind this resurgence of interest is what’s become known
as the “multicore crisis.” Moore’s law continues to deliver more transistors
per chip,1 but instead of those transistors being used to make a single CPU

faster, we’re seeing computers with more and more cores.

As Herb Sutter said, “The free lunch is over.”2 You can no longer make your
code run faster by simply waiting for faster hardware. These days if you need
more performance, you need to exploit multiple cores, and that means
exploiting parallelism.

Concurrent or Parallel?
This is a book about concurrency, so why are we talking about parallelism?
Although they’re often used interchangeably, concurrent and parallel refer to
related but different things.

Related but Different
A concurrent program has multiple logical threads of control. These threads
may or may not run in parallel.

A parallel program potentially runs more quickly than a sequential program
by executing different parts of the computation simultaneously (in parallel).
It may or may not have more than one logical thread of control.

1. http://en.wikipedia.org/wiki/Moore's_law
2. http://www.gotw.ca/publications/concurrency-ddj.htm

• Click HERE to purchase this book now. discuss

http://en.wikipedia.org/wiki/Moore's_law
http://www.gotw.ca/publications/concurrency-ddj.htm
http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

An alternative way of thinking about this is that concurrency is an aspect of
the problem domain—your program needs to handle multiple simultaneous
(or near-simultaneous) events. Parallelism, by contrast, is an aspect of the
solution domain—you want to make your program faster by processing differ-
ent portions of the problem in parallel.

As Rob Pike puts it,3

Concurrency is about dealing with lots of things at once.

Parallelism is about doing lots of things at once.

So is this book about concurrency or parallelism?

Joe asks:

Concurrent or Parallel?
My wife is a teacher. Like most teachers, she’s a master of multitasking. At any one
instant, she’s only doing one thing, but she’s having to deal with many things concur-
rently. While listening to one child read, she might break off to calm down a rowdy
classroom or answer a question. This is concurrent, but it’s not parallel (there’s only
one of her).

If she’s joined by an assistant (one of them listening to an individual reader, the
other answering questions), we now have something that’s both concurrent and
parallel.

Imagine that the class has designed its own greeting cards and wants to mass-produce
them. One way to do so would be to give each child the task of making five cards.
This is parallel but not (viewed from a high enough level) concurrent—only one task
is underway.

Beyond Sequential Programming
What parallelism and concurrency have in common is that they both go
beyond the traditional sequential programming model in which things happen
one at a time, one after the other. We’re going to cover both concurrency and
parallelism in this book (if I were a pedant, the title would have been Seven
Concurrent and/or Parallel Programming Models in Seven Weeks, but that
wouldn’t have fit on the cover).

Concurrency and parallelism are often confused because traditional threads
and locks don’t provide any direct support for parallelism. If you want to

3. http://concur.rspace.googlecode.com/hg/talk/concur.html

Chapter 1. Introduction • 2

• Click HERE to purchase this book now. discuss

http://concur.rspace.googlecode.com/hg/talk/concur.html
http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

exploit multiple cores with threads and locks, your only choice is to create a
concurrent program and then run it on parallel hardware.

This is unfortunate because concurrent programs are often nondeterministic
—they will give different results depending on the precise timing of events. If
you’re working on a genuinely concurrent problem, nondeterminism is natural
and to be expected. Parallelism, by contrast, doesn’t necessarily imply nonde-
terminism—doubling every number in an array doesn’t (or at least, shouldn’t)
become nondeterministic just because you double half the numbers on one
core and half on another. Languages with explicit support for parallelism allow
you to write parallel code without introducing the specter of nondeterminism.

Parallel Architecture
Although there’s a tendency to think that parallelism means multiple cores,
modern computers are parallel on many different levels. The reason why
individual cores have been able to get faster every year, until recently, is that
they’ve been using all those extra transistors predicted by Moore’s law in
parallel, both at the bit and at the instruction level.

Bit-Level Parallelism
Why is a 32-bit computer faster than an 8-bit one? Parallelism. If an 8-bit
computer wants to add two 32-bit numbers, it has to do it as a sequence of
8-bit operations. By contrast, a 32-bit computer can do it in one step, handling
each of the 4 bytes within the 32-bit numbers in parallel.

That’s why the history of computing has seen us move from 8- to 16-, 32-,
and now 64-bit architectures. The total amount of benefit we’ll see from this
kind of parallelism has its limits, though, which is why we’re unlikely to see
128-bit computers soon.

Instruction-Level Parallelism
Modern CPUs are highly parallel, using techniques like pipelining, out-of-order
execution, and speculative execution.

As programmers, we’ve mostly been able to ignore this because, despite the
fact that the processor has been doing things in parallel under our feet, it’s
carefully maintained the illusion that everything is happening sequentially.

This illusion is breaking down, however. Processor designers are no longer
able to find ways to increase the speed of an individual core. As we move into
a multicore world, we need to start worrying about the fact that instructions

• Click HERE to purchase this book now. discuss

Parallel Architecture • 3

http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

aren’t handled sequentially. We’ll talk about this more in Memory Visibility,
on page ?.

Data Parallelism
Data-parallel (sometimes called SIMD, for “single instruction, multiple data”)
architectures are capable of performing the same operations on a large
quantity of data in parallel. They’re not suitable for every type of problem,
but they can be extremely effective in the right circumstances.

One of the applications that’s most amenable to data parallelism is image
processing. To increase the brightness of an image, for example, we increase
the brightness of each pixel. For this reason, modern GPUs (graphics process-
ing units) have evolved into extremely powerful data-parallel processors.

Task-Level Parallelism
Finally, we reach what most people think of as parallelism—multiple proces-
sors. From a programmer’s point of view, the most important distinguishing
feature of a multiprocessor architecture is the memory model, specifically
whether it’s shared or distributed.

In a shared-memory multiprocessor, each processor can access any memory
location, and interprocessor communication is primarily through memory,
as you can see in Figure 1, Shared memory, on page 5.

Figure 2, Distributed memory, on page 5 shows a distributed-memory system,
where each processor has its own local memory and where interprocessor
communication is primarily via the network.

Because communicating via memory is typically faster and simpler than doing
so over the network, writing code for shared memory-multiprocessors is
generally easier. But beyond a certain number of processors, shared memory
becomes a bottleneck—to scale beyond that point, you’re going to have to
tackle distributed memory. Distributed memory is also unavoidable if you
want to write fault-tolerant systems that use multiple machines to cope with
hardware failures.

Concurrency: Beyond Multiple Cores
Concurrency is about a great deal more than just exploiting parallelism—used
correctly, it allows your software to be responsive, fault tolerant, efficient,
and simple.

Chapter 1. Introduction • 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

Bus

Memory

Processor

Cache

Processor

Cache

Processor

Cache

Figure 1—Shared memory

Network

Memory

Processor

Memory

Processor

Memory

Processor

Figure 2—Distributed memory

Concurrent Software for a Concurrent World
The world is concurrent, and so should your software be if it wants to interact
effectively.

Your mobile phone can play music, talk to the network, and pay attention to
your finger poking its screen, all at the same time. Your IDE checks the syntax

• Click HERE to purchase this book now. discuss

Concurrency: Beyond Multiple Cores • 5

http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

of your code in the background while you continue to type. The flight system
in an airplane simultaneously monitors sensors, displays information to the
pilot, obeys commands, and moves control surfaces.

Concurrency is the key to responsive systems. By downloading files in the
background, you avoid frustrated users having to stare at an hourglass cursor.
By handling multiple connections concurrently, a web server ensures that a
single slow request doesn’t hold up others.

Distributed Software for a Distributed World
Sometimes geographical distribution is a key element of the problem you’re
solving. Whenever software is distributed on multiple computers that aren’t
running in lockstep, it’s intrinsically concurrent.

Among other things, distributing software helps it handle failure. You might
locate half your servers in a data center in Europe and the others in the
United States, so that a power outage at one site doesn’t result in global
downtime. This brings us to the subject of resilience.

Resilient Software for an Unpredictable World
Software contains bugs, and programs crash. Even if you could somehow
produce perfectly bug-free code, the hardware that it’s running on will
sometimes fail.

Concurrency enables resilient, or fault-tolerant, software through indepen-
dence and fault detection. Independence is important because a failure in one
task should not be able to bring down another. And fault detection is critical
so that when a task fails (because it crashes or becomes unresponsive, or
because the hardware it’s running on dies), a separate task is notified so that
it can take remedial action.

Sequential software can never be as resilient as concurrent software.

Simple Software in a Complex World
If you’ve spent hours wrestling with difficult-to-diagnose threading bugs, it
might be hard to believe, but a concurrent solution can be simpler and
clearer than its sequential equivalent when written in the right language with
the right tools.

This is particularly true whenever you’re dealing with an intrinsically concur-
rent real-world problem. The extra work required to translate from the
concurrent problem to its sequential solution clouds the issue. You can avoid
this extra work by creating a solution with the same structure as the problem:

Chapter 1. Introduction • 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

rather than a single complex thread that tries to handle multiple tasks when
they need it, create one simple thread for each.

The Seven Models
The seven models covered in this book have been chosen to provide a broad
view of the concurrency and parallelism landscape.

Threads and locks: Threads-and-locks programming has many well-under-
stood problems, but it’s the technology that underlies many of the other
models we’ll be covering and it is still the default choice for much concur-
rent software.

Functional programming: Functional programming is becoming increasingly
prominent for many reasons, not the least of which is its excellent support
for concurrency and parallelism. Because they eliminate mutable state,
functional programs are intrinsically thread-safe and easily parallelized.

The Clojure Way—separating identity and state: The Clojure language has
popularized a particularly effective hybrid of imperative and functional
programming, allowing the strengths of both approaches to be leveraged
in concert.

Actors: The actor model is a general-purpose concurrent programming model
with particularly wide applicability. It can target both shared- and dis-
tributed-memory architectures and facilitate geographical distribution,
and it provides particularly strong support for fault tolerance and
resilience.

Communicating Sequential Processes: On the face of things, Communicating
Sequential Processes (CSP) has much in common with the actor model,
both being based on message passing. Its emphasis on the channels used
for communication, rather than the entities between which communication
takes place, leads to CSP-based programs having a very different flavor,
however.

Data parallelism: You have a supercomputer hidden inside your laptop. The
GPU utilizes data parallelism to speed up graphics processing, but it can
be brought to bear on a much wider range of tasks. If you’re writing code
to perform finite element analysis, computational fluid dynamics, or
anything else that involves significant number-crunching, its performance
will eclipse almost anything else.

The Lambda Architecture: Big Data would not be possible without paral-
lelism—only by bringing multiple computing resources to bear can we

• Click HERE to purchase this book now. discuss

The Seven Models • 7

http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

contemplate processing terabytes of data. The Lambda Architecture
combines the strengths of MapReduce and stream processing to create
an architecture that can tackle a wide variety of Big Data problems.

Each of these models has a different sweet spot. As you read through each
chapter, bear the following questions in mind:

• Is this model applicable to solving concurrent problems, parallel problems,
or both?

• Which parallel architecture or architectures can this model target?

• Does this model provide tools to help you write resilient or geographically
distributed code?

In the next chapter we’ll look at the first model, Threads and Locks.

Chapter 1. Introduction • 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pb7con
http://forums.pragprog.com/forums/pb7con

