
Extracted from:

Pragmatic Guide to Git

This PDF file contains pages extracted from Pragmatic Guide to Git, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing).
This is available only in online versions of the books. The printed versions

are black and white. Pagination might vary between the online and
printer versions; the content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks.Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the desig-
nations have been printed in initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic
Programmers, LLC.

Every precautionwas taken in the preparation of this book.However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your
team create better software and have more fun. For more information, as well as
the latest Pragmatic titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
Steve Peter (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2010 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form, or by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of
the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-72-2
Printed on acid-free paper.
Book version: P3.0—January 2012

http://pragprog.com

Now that you have Git and your repository set up, it’s time
to start learning how to interact with Git. A handful of
commands are all you need to get you through most tasks.
Once you finish the tasks in this part, you’ll know them all.

As we saw in the introduction, the workflow in Git is
different from other version control systems and definitely
different from working without any version control system.
Each time you make a change you want to track, you need
to commit it.

The workflow goes like this. First, create your repository—
either create a new repository or clone an existing one.
Then make some changes, test that they do what you want,
commit those changes, make some more changes, and so
on. Finally, you share those changes when they’re ready.

One thing to keep in mind when working with a distributed
version control system (DVCS) like Git is that committing a
change and sharing that change are two different processes.
This is different from centralized VCS such as Subversion
and CVS, where the two actions are synonymous.

This separation provides you with a lot of freedom. You can
experiment locally, try a whole bunch of things, and then
share the best solution, but to paraphrase an old uncle,
“With great freedom comes great responsibility.”

Lots of small, discrete changes that touch very specific
portions of the code are better than a few monolithic
changes. Make sure you don’t sit on a whole bunch of
changes until they’re perfect. First, they’ll never be perfect.
There’s always something else to refactor and abstract away.
Second, the bigger the change becomes, the harder it
becomes to fully understand, review, and test.

Third, it makes tracking down bugs later easier. Tools such
as git bisect (see Task 39, Finding Bugs with bisect, on page
?) make finding which commit introduced a bug easy.
Smaller commits mean that once you know which commit

Working with Git • 7

caused the bug, you can figure out the exact change that
much faster.

We’ve already covered how to create a new repository or
clone an existing one (git init and git clone in Task 3, Creating
a New Repository, on page ? and Task 4, Creating a Local
Copy of an Existing Repository, on page ?, respectively).
Making changes and testing are up to you and how you
interact with the code in your project. Seeing what changes
need to be committed is where we pick up. The tasks in this
part are ordered roughly the same way you’ll use them in
Git.

Covered in this part:

• The first thing is seeing what has changed. We cover
this in Task 5, Seeing What Has Changed, on page 10,
which shows you how to compare your working tree
with what the repository knows about.

• After you know what has changed, then you need to
stage the changes you want to commit. This is covered
in Task 6, Staging Changes to Commit, on page 12.

• The changes are staged; now it’s time to commit them.
Task 7, Committing Changes, on page 14 shows you
how to create a commit and add a log message to it.

• With any project, files will be generated that you don’t
need to commit. Task 8, Ignoring Files, on page 16
teaches you how to tell Git to ignore those files.

• What happens when you accidentally stage a file you
didn’t mean to or you decide that you want to get rid
of a change that you made to a file before committing
it? Task 9, Undoing Uncommitted Changes, on page 18
covers how to undo those staged changes so you don’t
accidentally commit something.

• Files sometimes need to change where they live. A new
project layout is adopted, or files or directories are

8 • Working with Git

renamed. Task 10, Moving Files in Git, on page 20 shows
you how to handle these inevitable changes.

• Likewise, some files or directories outlive their
usefulness. Since the repository keeps a record of all
files that it has ever tracked, you can delete those old
files without worrying about not having them to
reference later if you need to do so. Task 11, Deleting
Files in Git, on page 22 shows you how.

• Finally, Task 12, Sharing Changes, on page 24 is a
whirlwind tour of how to share changes with other
developers. It’s done at 30,000 feet and is enough to
get you started. A lot more about collaboration is
covered in Part IV, Working with a Team.

Now, let’s dive into the specifics.

Working with Git • 9

5 Seeing What Has Changed

Your local repository tracks changes. Before you start committing just
anything, you need to see what changes exist between your working
tree and your repository and what changes are staged and ready to
commit. git status is the tool for the job.

git status has several different outputs, depending on what’s in your
working tree. The example on the next page is from one of my reposi-
tories, and it contains all three types of outputs: staged changes,
changes to known files, and untracked files. Let’s go over them in
reverse order of how they appear on the next page—the order of least
important to most.

Starting at lines 14 and ending at 17, Git outputs the files and paths
that it doesn’t know anything about—the files that you haven’t told
Git about yet. This section has the header Untracked files before it starts,
and if you turned on color output like we discussed in Task 2, Config-
uring Git, on page ?, it displays the files and paths in red.

Next up are the files that Git knows about but that have changed.
These are listed between lines 8 and 12 and are preceded by Changed
but not updated. Like untracked files, these show up as red if you have
colors configured.

Finally, the top section listed between lines 3 and 6 shows what files
you would commit if you ran git commit right now. For more on com-
mitting, flip to Task 7, Committing Changes, on page 14. Files in this
section show up as green if you turned colors on and are preceded by
Changes to be committed.

Depending on the state of your repository, the output from git status
might contain any of those sections or none at all. It adapts itself as
needed.

10 • Working with Git

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pg_git
http://forums.pragprog.com/forums/pg_git

➤ What the status of a new repository looks like.

If you just created a repository using git init, this is what your repository
looks like:

prompt> git status
On branch master
#
Initial commit
#
nothing to commit (create/copy files and use "git add" to track)

➤ What git status looks like in a repository with changes.

git status requires a repository with some changes in its working tree
to see the various output. The following is the output of git status on
my local Castanaut repository:

prompt> git statusLine 1

On branch master #-

Changes to be committed: #-

(use "git reset HEAD <file>..." to unstage)-

#5

modified: castanaut.gemspec #-

#-

Changed but not updated: #-

(use "git add <file>..." to update what will be committed)-

(use "git checkout -- <file>..." to discard changes in ...10

#-

modified: README.txt #-

#-

Untracked files: #-

(use "git add <file>..." to include in what will be ...15

#-

pkg/ #-

➤ What git status looks like with no changes.

prompt> git status
On branch master
nothing to commit (working directory clean)

Related Tasks:

• Task 3, Creating a New Repository, on page ?
• Task 6, Staging Changes to Commit, on page 12
• Task 7, Committing Changes, on page 14

• Click HERE to purchase this book now. discuss

Seeing What Has Changed • 11

http://pragprog.com/titles/pg_git
http://forums.pragprog.com/forums/pg_git

6 Staging Changes to Commit

Git uses a two-step process to get changes into the repository. The first
step is staging changes through git add. Staging a change adds it to the
index, or staging area. This sits between the working tree—your view
of the repository—and the actual repository.

Through the staging area, you can control what is staged from the
most coarse-grained—adding everythingwithin the repository—down
to editing the changes, line by line.

First you can select individual files or paths to add by calling git add
and passing the filename or path as the parameter. Git adds everything
under a path if you provide that. It uses standard shell-stylewildcards,
so wildcards work: base.*matches base.rb and base.py.

Another quick way to add all files is the -A parameter. This adds all
the files inside the repository that are not explicitly ignored (see Task
8, Ignoring Files, on page 16). Closely related, you can add files that
have changed using the -u parameter. It doesn’t add any new files,
though, only files that have already been tracked and have modifica-
tions in them.

You can control which parts of a file you commit using the -p parame-
ter. Running this, you’re presented with each section of the file that
has changed, and you’re given the opportunity to add or skip it. You
can stage the change by pressing y or skip a change with n. s lets you
break the change into smaller pieces. This and a few other options
aren’t always available. You can press ? inside patch mode to get a list
of all the commands and what they do.

Taking the control a step further, you can directly edit the changes
that are being staged by using the -e parameter. This opens the diff in
your configured editor (we talked about that in Task 2, Configuring
Git, on page ?). Your editor has the file in a diff format—additions
are prefixed with +, and removals are prefixed with -.

One quirk of Git is that it can’t track empty directories (at least as of
version 1.7.2.1). There’s a reason for this in the underlying architecture
and the way Git tracks data in the repository, but that’s a bigger topic
than this page allows for. To track an “empty” directory, you can add
an empty dot file (a file beginning with a dot). An empty .gitignore
works (see Task 8, Ignoring Files, on page 16). I use .include_in_git.

12 • Working with Git

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pg_git
http://forums.pragprog.com/forums/pg_git

➤ Stage an entire file to commit.

prompt> git add path/to/file
... or ...
prompt> git add path/
... or everything under the current directory ...
prompt> git add .
prompt>

➤ Add all files in the current repository.

prompt> git add -A|--all
prompt>

➤ Add all tracked files that have been changed.

prompt> git add -u|--update
prompt>

➤ Choose which changes to commit.

prompt> git add -p|--patch
... or a specific file ...
prompt> git add -p path/to/file
prompt>

➤ Open the current diff in the editor.

prompt> git add -e
... or a specific file ...
prompt> git add -e path/to/file
prompt>

Related Tasks:

• Task 9, Undoing Uncommitted Changes, on page 18
• Task 5, Seeing What Has Changed, on page 10
• Task 7, Committing Changes, on page 14

• Click HERE to purchase this book now. discuss

Staging Changes to Commit • 13

http://pragprog.com/titles/pg_git
http://forums.pragprog.com/forums/pg_git

