
Extracted from:

Pragmatic Guide to Sass 3
Tame the Modern Style Sheet

This PDF file contains pages extracted from Pragmatic Guide to Sass 3,
published by the Pragmatic Bookshelf. Formore information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing).
This is available only in online versions of the books. The printed versions

are black and white. Pagination might vary between the online and
printed versions; the content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Pragmatic Guide to Sass 3
Tame the Modern Style Sheet

Hampton Catlin
Michael Catlin

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks.Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the desig-
nations have been printed in initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic
Programmers, LLC.

Every precautionwas taken in the preparation of this book.However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team
create better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)
Potomac Indexing, LLC (index)
Nicole Abramowitz (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-176-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

14 Adding Mixin Arguments

When you createdmixins inKeeping Code CleanwithMixins, you placed
all the necessary styles in the mixin itself. However, the true power
of mixins comes with using arguments.

Say you have a general notice style that you’d like to use in a mixin.
However, sometimes the notice is green, and sometimes it’s red.
Making two mixins seems a little unnecessary. You can use an argu-
ment instead! Instead of putting a predefined background in the
mixin block, put $background (or whatever youwish to call it) in. Then,
when naming the mixin, include the $background part in parentheses
after the name.

In the example (which uses a much simpler mixin, but you get the
idea), see that you can manipulate the arguments you pass in. The
background being used is darkened in order to get a border color.

When using the mixin, just pass in the arguments in the order you
defined them. You can also specifywhich argument iswhich by placing
the name in front of the argument—these are called keyword arguments.
You can see that in the second mixin use in the example. Although
this looks a little morewordy, it helps for a couple of reasons. It means
that you don’t have to remember the exact order of arguments. It also
makes your code easier to read. If you have two color-based arguments,
for example, using the keyword can help you remember which argu-
ment you’re referencing.

• Click HERE to purchase this book now. discuss

Adding Mixin Arguments • 5

http://pragprog.com/titles/pg_sass3
http://forums.pragprog.com/forums/pg_sass3

➤ Create a mixin with arguments.

advancedmixins/create_mixin.scss

@mixin notice-box($background, $width) {
background: $background;
border: 1px solid darken($background, 20%);
width: $width;

}

➤ Use a mixin that takes arguments.

advancedmixins/use_mixin.scss

@import "create_mixin";
.warning {
@include notice-box(red, 100%);

}
.welcome {
@include notice-box($width: 300px, $background: green);

}

This compiles to:

.warning {
background: red;
border: 1px solid #990000;
width: 100%; }

.welcome {
background: green;
border: 1px solid #001a00;
width: 300px; }

Related Tasks:
• Task 8, Keeping Code Clean with Mixins, on page ?
• Task 15, Using More Mixin Argument Tricks, on page ?

• Click HERE to purchase this book now. discuss

Adding Mixin Arguments • 6

http://media.pragprog.com/titles/pg_sass3/code/advancedmixins/create_mixin.scss
http://media.pragprog.com/titles/pg_sass3/code/advancedmixins/use_mixin.scss
http://pragprog.com/titles/pg_sass3
http://forums.pragprog.com/forums/pg_sass3

