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14 Adding Mixin Arguments

When you createdmixins inKeeping Code CleanwithMixins, you placed
all the necessary styles in the mixin itself. However, the true power
of mixins comes with using arguments.

Say you have a general notice style that you’d like to use in a mixin.
However, sometimes the notice is green, and sometimes it’s red.
Making two mixins seems a little unnecessary. You can use an argu-
ment instead! Instead of putting a predefined background in the
mixin block, put $background (or whatever youwish to call it) in. Then,
when naming the mixin, include the $background part in parentheses
after the name.

In the example (which uses a much simpler mixin, but you get the
idea), see that you can manipulate the arguments you pass in. The
background being used is darkened in order to get a border color.

When using the mixin, just pass in the arguments in the order you
defined them. You can also specifywhich argument iswhich by placing
the name in front of the argument—these are called keyword arguments.
You can see that in the second mixin use in the example. Although
this looks a little morewordy, it helps for a couple of reasons. It means
that you don’t have to remember the exact order of arguments. It also
makes your code easier to read. If you have two color-based arguments,
for example, using the keyword can help you remember which argu-
ment you’re referencing.
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➤ Create a mixin with arguments.

advancedmixins/create_mixin.scss

@mixin notice-box($background, $width) {
background: $background;
border: 1px solid darken($background, 20%);
width: $width;

}

➤ Use a mixin that takes arguments.

advancedmixins/use_mixin.scss

@import "create_mixin";
.warning {
@include notice-box(red, 100%);

}
.welcome {
@include notice-box($width: 300px, $background: green);

}

This compiles to:

.warning {
background: red;
border: 1px solid #990000;
width: 100%; }

.welcome {
background: green;
border: 1px solid #001a00;
width: 300px; }

Related Tasks:
• Task 8, Keeping Code Clean with Mixins, on page ?
• Task 15, Using More Mixin Argument Tricks, on page ?
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