
Extracted from:

Programming Phoenix ≥ 1.4
Productive |> Reliable |> Fast

This PDF file contains pages extracted from Programming Phoenix ≥ 1.4, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Phoenix ≥ 1.4
Productive |> Reliable |> Fast

Chris McCord
Bruce Tate
José Valim

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Jacquelyn Carter
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-226-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 1

Introducing Phoenix
The web has gone real time. The days of clicking links to load full pages are
over. Websites are as interactive as desktop applications these days, if not
more so. Servers manipulate widgets on a page with small data exchanges.
Pages ship form data up piece by piece as it becomes available instead of
waiting for one massive update. Today’s web developers need a framework
designed from the ground up around a real-time architecture, and Phoenix
is that framework.

Ironically, most of the individual pieces from Phoenix can also be found in
other places. You’ll find metaprogramming capabilities that remind you of
Lisp and domain-specific languages (DSLs) that remind you at times of Ruby.
Our method of composing services with a series of functional transformations
is reminiscent of Clojure’s Ring. We achieved high throughput and reliability
by climbing onto the shoulders of Erlang. Similarly, some of the groundbreak-
ing features like channels and reactive-friendly APIs combine the best features
of some of the best JavaScript frameworks but Phoenix makes it work at
scale. This precise cocktail of features, where each feature multiplies the
impact of the next, can’t be found elsewhere and that’s what makes Phoenix
stand out. Phoenix just feels right.

After using (and writing about) frameworks spanning a half dozen languages
across a couple of decades, we think the precise bundle of goodness that we’ll
share is powerful enough for the most serious problems you throw at it,
beautiful enough to be maintainable for years to come, and—most impor-
tant—fun to code. Give us a couple of pages and you’ll find that the framework
represents a great philosophy, one that leverages the reliability and grace of
Elixir. You’ll have a front-row seat to understand how we made the decisions
that define Phoenix and how best to use them to your advantage.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

Simply put, Phoenix is about productive, concurrent, beautiful, interactive,
and reliable applications. Let’s break each of these claims down.

Productive
Phoenix makes programmers productive. Right out of the box, Phoenix gives
you everything you’d expect from a web framework:

• A base architecture for your application
• A database access and management library for connecting to databases
• A routing layer for connecting web requests to your code
• A templating language and helpers for you to write HTML
• Flexible and performant JSON encoding and decoding for external APIs
• Internationalization strategies for taking your application to the world
• All the breadth and power behind Erlang and Elixir so you can grow

Like all web frameworks, Phoenix provides a good cross section of features
as functions so users don’t have to code their own. However, features are not
enough.

Productivity vs. Maintainability
All framework designers must walk a tightrope. Frameworks must anticipate
change by allowing customization, but presenting customization options
introduces complexity. Each new feature simply makes the high wire act more
treacherous. Let’s call one side of the line productivity and the other maintain-
ability.

When developers have to learn too much too soon, they must slow down to
absorb information. One way to keep developers productive early on is hiding
details. When a framework designer leans too far this way, developers must
pay a price because at some point, the framework will hide information their
users need to solve a critical problem. Unusual customizations lead to hours
of tedious searching for some mystery incantation to make things work.

Use such a framework long enough and you’ll inevitably make changes that
cause your application to drift away from the designers’ intentions, setting
yourself up for an eternal upstream battle against the framework. Whether
it’s a conflicting upgrade or an optimization that isn’t compatible with your
change doesn’t matter. The framework developer’s desire for short-term pro-
ductivity has cost users long-term maintainability. You can find plenty of
stale issues inside the issue trackers for both private and commercial web
frameworks, telling this tale with stark clarity.

Chapter 1. Introducing Phoenix • 2

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

Sometimes, understanding this limitation, framework designers lean too far
in the opposite direction. Too many options in too many places can also have
rippling consequences. Options presented in the wrong way force users to
make early uninformed decisions. Crippling detail work slowly starves users
of the time they need at the beginning of a project, when productivity is the
most important.

Phoenix takes a slightly different approach as it walks this tightrope. Phoenix
is an opinionated framework that favors convention over configuration. But
rather than hiding complexity, it layers complexity, providing details piece by
piece.

Phoenix lets users see exactly what’s happening by providing an explicit list
of every bit of code a specific route will invoke, one after another. Phoenix
hides details in layers by breaking its functionality into small functions and
modules and naming them well so they can tell the story. Every application
using Phoenix has an endpoint that looks like this:

defmodule MyApp.Endpoint do
use Phoenix.Endpoint, otp_app: :my_app

plug Plug.Static, ...
plug Plug.RequestId
plug Plug.Telemetry, ...
plug Plug.Parsers, ...
plug Plug.MethodOverride
plug Plug.Head
plug Plug.Session, ...
plug MyApp.Router

end

We are going to dive deep into the mechanics later in the book. For now, what
matters is that we have an overview of what our web application provides at
a high level.

Rather than forcing users to configure the server with thousands of tiny
decisions, Phoenix provides a default outline. If all you want to do is peek
under the hood, you can open up a file. You don’t need to modify this base
outline at all, but when it’s time to make that obscure change, you can edit
this outline to your heart’s content.

So often, productivity means avoiding blocks, and that means developers
must have adequate information. Couple the layered architecture with Elixir’s
fantastic tools for documentation and you have the tools to be quite productive.
For example, you can learn more about any of the components above by

• Click HERE to purchase this book now. discuss

Productive • 3

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

simply typing h Plug.Session in your Elixir terminal, or by accessing the docu-
mentation online1 or directly in your favorite editor.

At the end of the day, Phoenix wants to optimize both productivity and maintain-
ability. After all, maintainability means productivity over time.

Functional Programming 101: Immutability
One of the secrets for Phoenix’s long-term productivity comes from a trait
shared across many functional programming languages: immutability.

Imagine the following code:

list = [1, 2, 3]
do_something(list)
list

In most programming languages, you cannot assert with a 100% guarantee
the list will still be [1, 2, 3] after calling do_something. That’s because do_something
can change the list in place. In Elixir, that’s simply not possible. Our data
structures are immutable, so instead of changing the list, we can only build
new lists. Therefore our code is written as a series of small functions that
receive everything they have to work with as input and return everything they
have changed.

This plays a very important role in code readability and maintainability. You
will spend much less time and brain cycles trying to figure out what object
changed what or what is the current state of a certain component.

While this is a small example, you will find working with Elixir and functional
programming to be full of small changes and improvements that make your
code easier to understand, both for your teammates and your future self.

Concurrent
Over the last decade, we have been hearing more and more about concurrency.
If you have never used a language with first-class concurrency support before,
you may be wondering what all the fuss is about. In this section, we will
cover why concurrency matters in the context of web applications and how
Phoenix developers leverage it to build fast, performant applications. First
let’s talk about the different types of concurrency.

1. https://hexdocs.pm/plug/Plug.Session.html

Chapter 1. Introducing Phoenix • 4

• Click HERE to purchase this book now. discuss

https://hexdocs.pm/plug/Plug.Session.html
http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

Types of Concurrency
For our purposes, let’s think of concurrency as a web application’s ability to
process two or more web requests at the same time. The simplest way to
handle multiple requests is by executing them one right after the other, but
that strategy isn’t very efficient. To process a request, most web apps need to
perform I/O such as making database requests or communicating with an
external API. While you’re waiting for those external services to complete, you
could start working on the next request. This is I/O concurrency. Most program-
ming languages provide I/O concurrency out of the box or via libraries. Some-
times, however, the I/O concurrency abstraction ends up leaking to the devel-
oper, who must write code in a confusing way, with callbacks of some form.

Another type of concurrency is multi-core concurrency, which focuses on the
CPU. If your machine has more than one core, one core processes one request
while a second core processes another one. For the rest of this discussion,
we will consider machines with four cores in our examples, which is common-
place, as even smart watches have multiple cores today.

There are two main ways to leverage multi-core concurrency:

• With an operating system process per core: If your machine has four
cores, you will start four different instances of your web application.

• With user space routines: If your machine has four cores, you start a
single instance of your web application that is capable of using all cores
efficiently.

The downside of using operating system processes is that those four instances
cannot share memory. This solution typically leads to higher resource usage
and more complex solutions.

Thanks to the Erlang VM, Elixir provides I/O concurrency without callbacks,
with user-space multi-core concurrency. In a nutshell, this means Elixir
developers write code in the simplest and most straightforward fashion and
the virtual machine takes care of using all of the resources, both CPU and
I/O, for you. The result is a better application. Let’s talk about why.

Simpler Solutions
One issue with concurrency via operating system processes is the poor
resource usage. Each core needs a separate instance of your application. If
you have 16 cores, you need 16 instances, each on its own memory space.

• Click HERE to purchase this book now. discuss

Concurrent • 5

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

With user space concurrency, you always start a single instance of your
application. As you receive new requests, they are naturally spread throughout
all cores. Furthermore, they all share the same memory. This small drawback
might seem a little vague, so let’s make it more explicit by looking at one
specific problem, a common dashboard.

Imagine each user in your application has a dashboard. The data in this
dashboard takes around 200ms to load and it takes about 100kB in memory.
Since we want to provide good experience to users, we decide to cache this
data. Let’s say your web application supports only operating system process
concurrency. That means each application instance needs to keep its own
cache. For ten thousand (10,000) active users, that’s a 1GB data cache for
all of the dashboards per instance. For 16 cores with 16 instances, that’s
16GB of cache, and it’s only for the dashboard data. Furthermore, since each
instance has its own cache shared across all users, each cache will be less
effective at startup time because cache hit rates will be lower, leading to poor
startup times.

To save memory and improve the hit rates, you may decide to put the data
in an external caching system, such as Redis or memcached. This external
cache increases your complexity for both development and deployment con-
cerns because you now have a new external dependency. Your application is
much faster than it would be if you were simply querying the database, but
every time users access the dashboard, your application still needs to go over
the network, load the cache data, and deserialize it.

In Elixir, since we start a single web application instance across all cores, we
have a single cache of 1GB, shared across all cores, regardless of whether
the machine has 1, 4, or 16 cores. We don’t need to add external dependencies
and we can serve the dashboard as quickly as possible because we don’t need
to go over the network.

Does this mean Elixir eliminates the need for caching systems? Surely not.
For example, if you have a high number of machines running in production,
you may still want an external caching system as a fallback to the local one.
We just don’t need external cache systems nearly as often. Elixir developers
typically get a lot of mileage from their servers, without a need to resort to
external caching. For example, Bleacher Report was able to replace 150
instances running Ruby on Rails with 5 Phoenix instances, which has been
proven to handle eight times their average load at a fraction of the cost.2

2. https://www.techworld.com/apps-wearables/how-elixir-helped-bleacher-report-handle-8x-more-traffic-3653957/

Chapter 1. Introducing Phoenix • 6

• Click HERE to purchase this book now. discuss

https://www.techworld.com/apps-wearables/how-elixir-helped-bleacher-report-handle-8x-more-traffic-3653957/
http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

And while this is just one example, we have the option to make similar trade-
offs at different times in our stacks. For simple asynchronous processing,
you don’t need a background job framework. For real-time messaging across
nodes, you don’t need an external queue system. We may still use those tools,
but Elixir developers don’t need to reach for them as often as other developers
might. We can avoid or delay buying into complex solutions, spending more
time on domain and business logic.

Performance for Developers
Developers are users too. Elixir’s concurrency can have a dramatic impact
on our experience as we write software. When we compile software, run tests,
or even fetch dependencies, Elixir is using all cores in your machine, and
these shorter cycles over the course of a day can stack up.

Here is a fun story. In its first versions, Elixir used to start as many tests
concurrently as the number of cores in your machine. For instance, if your
machine has four cores, it would run at most four tests at the same time.
This is a great choice if your tests are mostly using the CPU.

However, for web applications, it is most likely that your tests are also waiting
on I/O, due to the database or external systems. Based on this insight, the
Elixir team bumped the default number of concurrent tests to double the
number of cores. The result? Users reported their test suites became 20%-30%
faster. Overall, it is not uncommon for us to hear about web applications
running thousands of tests in under 10 seconds.

But Concurrency Is Hard
You may have heard that concurrency is hard and we don’t dispute that. We
do claim that traditional languages make concurrency considerably harder
than it should be. Many of the issues with concurrency in traditional program-
ming languages come from in-memory race conditions, caused by mutability.

Let’s take an example. If you have two user space routines trying to remove
an element from the same list, you can have a segmentation fault or similarly
scary error, as those routines may change the same address in memory at
the same time. This means developers need to track where all of the state is
and how it is changing across multiple routines.

In functional programming languages, such as Elixir, the data is immutable.
If you want to remove an element from a list, you don’t change that list in
memory. You create a new list instead. That means as a functional developer,
you don’t need to be concerned with bugs that are caused by concurrent

• Click HERE to purchase this book now. discuss

Concurrent • 7

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

access to memory. You’ll deal only with concurrency issues that are natural
to your domain.

For example, what is the issue with this code sample?

product = get_product_from_the_database(id)
product = set_product_pageviews(get_product_pageviews(product) + 1)
update_product_in_the_database(product)

Consider a product with 100 pageviews. Now imagine two requests are hap-
pening at the same time. Each request reads the product from the database,
sees that the counter is 100, increments the counter to 101, and updates the
product in the database. When both requests are done, the end result could
be 101 in the database while we expected it to be 102. This is a race condition
that will happen regardless of the programming language you are using. Dif-
ferent databases will have different solutions to the problem. The simplest
one is to perform the increment atomically in the database.

Therefore, when talking about web applications, concurrency issues are nat-
ural. Using a language like Elixir and a framework such as Phoenix makes
all of the difference in the world. When your chosen environment is equipped
with excellent tools to reason about concurrency, you’ll have all of the tools
you need to grow as a developer and improve your reasoning about concur-
rency in the wild.

In Elixir, our user-space abstraction for concurrency is also called processes,
but do not confuse them with operating system processes. Elixir processes
are abstractions inside the Erlang VM that are very cheap and very lightweight.
Here is how you can start 100,000 of them in a couple of seconds:

for i <- 1..100_000 do
spawn(fn -> Process.sleep(:infinity) end)

end

From now on, when you read the word process, you should think about Elixir’s
lightweight processes rather than operating system processes. That’s enough
about concurrency for now but we will be sure to revisit this topic later.

Beautiful Code
Elixir is perhaps the first functional language to support Lisp-style macros
with a more natural syntax. This feature, like a template for code, is not
always the right tool for everyday users, but macros are invaluable for
extending the Elixir language to add the common features all web servers
need to support.

Chapter 1. Introducing Phoenix • 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

For example, web servers need to map routes onto functions that do the job:

pipeline :browser do
plug :accepts, ["html"]
plug :fetch_session
plug :protect_from_forgery

end

pipeline :api do
plug :accepts, ["json"]

end

scope "/", MyApp do
pipe_through :browser

get "/users", UserController, :index
...

end

scope "/api/", MyApp do
pipe_through :api

...
end

You’ll see this code a little later. You don’t have to understand exactly what
it does. For now, know that the first group of functions will run for all
browser-based applications, and the second group of functions will run for
all JSON-based applications. The third and fourth blocks define which URLs
will go to which controller.

You’ve likely seen code like this before. Here’s the point. You don’t have to
sacrifice beautiful code to use a functional language. Your code organization
can be even better. In Phoenix, you won’t have to read through inheritance
chains to know how your code works. You’ll just build a pipeline for each group
of routes that work the same way.

You can find an embarrassing number of frameworks that break this kind of
code down into something that is horribly inefficient. Consultancies have
made millions on performance tuning by doing nothing more than tuning
route tables. This Phoenix example reduces your router to pattern matching
that’s further optimized by the virtual machine, becoming extremely fast.
We’ve built a layer that ties together Elixir’s pattern matching with the macro
syntax to provide an excellent routing layer, and one that fits the Phoenix
framework well.

You’ll find many more examples like this one, such as Ecto’s elegant query
syntax or how we express requests as a pipeline of functions that compose

• Click HERE to purchase this book now. discuss

Beautiful Code • 9

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

well and run quickly. In each case, you’re left with code that’s easier to read,
write, and understand.

We’re not here to tell you that macros are the solution to all problems, or that
you should use a DSL when a function call should do. We’ll use macros when
they can dramatically simplify your daily tasks, making them easier to
understand and produce. When we do build a DSL, you can bet that we’ve
done our best to make it fast and intelligent.

Effortlessly Extensible Architecture
The Phoenix framework gives you the right set of abstractions for extension.
Your applications will break down into individual functions. Rather than rely
on other mechanisms like inheritance that hide intentions, you’ll roll up your
functions into pipelines, where each function feeds into the next. It’s like
building a shopping list for your requests.

In this book, you’ll write your own authentication code, based on secure open
standards. You’ll see how easy it is to tune behavior to your needs and extend
it when you need to.

The Phoenix abstractions, in their current incarnation, are new, but each has
withstood the test of time. When it’s time to extend Phoenix—whether you’re
plugging in your own session store or doing something as comprehensive as
attaching third-party applications like a Twitter wrapper—you’ll have the
right abstractions available to ensure that the ideas can scale as well as they
did when you wrote the first line of code.

Interactive
By this point, you may be noticing that each concept builds on the previous
one. Elixir makes productive, explicit layers available to programmers who
can use them to build concurrent applications. Phoenix introduces beautiful,
concurrent abstractions for use in beautiful APIs.

For the first four years, the Phoenix team worked at building this infrastruc-
ture, and this past year we’ve seen the culmination of this investment in new,
exciting APIs for building interactive applications. The best example is Phoenix
LiveView, a library for building applications without custom JavaScript. Until
the right infrastructure was in place, LiveView could be only a dream.

Building interactive applications does require APIs that shield many different
concerns from an end user, but APIs are just the tip of the iceberg. Underneath
that tip is a tremendous amount of infrastructure. Let’s take a peak beneath
the surface.

Chapter 1. Introducing Phoenix • 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

Scaling by Forgetting
Traditional web servers scale by treating each tiny user interaction as an
identical stateless request. The application doesn’t save state between requests
at all. It simply looks up the user and simultaneously looks up the context
of the conversation in a user session. Presto. All scalability problems go away
because there’s only one type of connection.

But there’s a cost. The developer must keep track of the state for each request,
and that burden can be particularly arduous for newer, more interactive
applications with intimate, long-running rich interactions. As a developer,
until now, you’ve been forced to make a choice between applications that
intentionally forget important details to scale and applications that try to
remember too much and break under load.

Processes and Channels
With Elixir, you can create hundreds of thousands of lightweight processes
without breaking a sweat. Lightweight processes also mean lightweight con-
nections, and that matters because connections can be conversations. Whether
you’re building a chat on a game channel or a map to the grocery store, you
won’t have to juggle the details by hand anymore. This application style is
called channels, and Phoenix makes it easy. Here’s what a typical channels
feature might look like:

def handle_in("new_annotation", params, socket) do
broadcast! socket, "new_annotation", %{

user: %{username: "anon"},
body: params["body"],
at: params["at"]

}

{:reply, :ok, socket}
end

You don’t have to understand the details. Just understand that when your
application needs to connect your users and broadcast information in real
time, your code can get much simpler and faster.

Even now, you’ll see many different types of frameworks begin to support
channel-style features, from Java to JavaScript and even Ruby. Here’s the
problem. None of them comes with the simple guarantees that Phoenix has:
isolation and concurrency. Isolation guarantees that if a bug affects one
channel, all other channels continue running. Breaking one feature won’t
bleed into other site functionality. Concurrency means one channel can never

• Click HERE to purchase this book now. discuss

Interactive • 11

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

block another one, whether code is waiting on the database or crunching
data. This key advantage means that the UI never becomes unresponsive
because the user started a heavy action. Without those guarantees, the
development bogs down into a quagmire of low-level concurrency details.

You may also be wondering whether keeping an open connection per user
can scale. The Phoenix team decided to benchmark their channels abstraction
and they were able to reach two million connections on a single node.3 And
while that proves Phoenix Channels scale vertically (i.e., on powerful
machines), it also scales horizontally. If you need to run a cluster of Phoenix
instances, Phoenix will broadcast messages across all nodes out of the box,
without a need for external dependencies.

It’s true, you can build these kinds of applications without Phoenix, but
building them without the guarantees of isolation and concurrency is never
pleasant. The results will almost universally be infected with reliability and
scalability problems, and your users will never be as satisfied as you’d like
to make them.

Presence and LiveView
As Phoenix grows and matures, the team continues to provide tools developers
can use to build interactive applications. The first addition was support for
tracking presence. Tracking which users are connected to a cluster of
machines is a notoriously difficult problem. But in Phoenix, it takes as little
as ten lines of code to track which users, fridges, cars, doors, or houses are
connected to your application. In a world that is getting more and more con-
nected, this feature is essential.

The best part about presence is that it doesn’t require any external dependen-
cies. Regardless of whether you are running two Phoenix nodes or twenty,
those nodes will communicate with each other, making sure to track connec-
tions regardless of where they happen in the cluster. You get a fantastic feature
set right out of the box.

The most recent interactive development tool is LiveView. LiveView allows devel-
opers to build rich, interactive real-time applications without writing custom
JavaScript.4 For the JavaScript developers out there, it can be summarized
as “server-side React”. Here is a simple counter built with LiveView:

3. https://phoenixframework.org/blog/the-road-to-2-million-websocket-connections
4. https://dockyard.com/blog/2018/12/12/phoenix-liveview-interactive-real-time-apps-no-need-to-write-javascript

Chapter 1. Introducing Phoenix • 12

• Click HERE to purchase this book now. discuss

https://phoenixframework.org/blog/the-road-to-2-million-websocket-connections
https://dockyard.com/blog/2018/12/12/phoenix-liveview-interactive-real-time-apps-no-need-to-write-javascript
http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

defmodule DemoWeb.CounterLive do
use Phoenix.LiveView

def render(assigns) do
~L"""
<%= @val %>
<button phx-click="inc">+</button>
"""

end

def mount(_session, socket) do
{:ok, assign(socket, val: 0)}

end

def handle_event("inc", _, socket) do
{:noreply, update(socket, :val, &(&1 + 1))}

end
end

When Phoenix renders the page the first time, it works just like any other
static page. That means browsers get a fast first-page view and search engines
have something to index. Once rendered, Phoenix connects to the LiveView
on the server, using WebSockets and Channels. LiveView applications are
breathtakingly simple:

• A function renders a web page.
• That function accepts state as an input and returns a web page as output.
• Events can change that state, bit by bit.

State is a simple data structure that can hold whatever you want it to. Events
that change your state can come from a button or a form on a web page.
Other events can come from your application, like a low-battery sensor else-
where in your application.

The best part is that LiveView is smart enough to send only what changes,
and only when it changes. And once again, all you need to make this work is
Phoenix.

Combine LiveView with Phoenix’s ability to broadcast changes and track users
in a cluster and you have the most complete tooling for building rich and
interactive applications out of the box.

Reliable
As Chris followed José into the Elixir community, he learned to appreciate
the frameworks that Erlang programmers have used to make the most reliable
applications in the world. Before Elixir, the language of linked and supervised

• Click HERE to purchase this book now. discuss

Reliable • 13

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

processes wasn’t part of his vocabulary. After spending some time with Elixir,
he found the missing pieces he’d been seeking.

You see, you might have interactive applications built from beautiful, concur-
rent, responsive code, but it doesn’t matter unless your code is reliable. Erlang
applications have always been more reliable than others in the industry. The
secret is the process linking structure and the process communication, which
allow effective supervision. You can start concurrent tasks and services that
are fully supervised. When one crashes, Elixir can restart it in the last known
good state, along with any tainted related service. Erlang’s supervisors can
have supervisors too, so your whole application will have a tree of supervisors.

The nice thing is that you won’t have to write that supervision code yourself.
By default, Phoenix has set up most of the supervision structure for you. For
example, if you want to talk to the database, you need to keep a pool of
database connections, and Phoenix provides one out of the box. As you’ll see
later on, we can monitor and introspect this pool. It’s straightforward to study
bottlenecks and even emulate failures by crashing database connections on
purpose, only to see supervisors establishing new connections in their place.
As a programmer, these abstractions will give you the freedom of a carpenter
building on a fresh clean slab, but your foundation solves many of your
hardest problems before you even start. As an administrator, you’ll thank us
every day of the week because of the support calls that don’t come in.

In the next chapter, you’ll dive right in. From the beginning, you’ll build a
quick application, and we’ll walk you through each layer of Phoenix. The
water is fine. Come on in!

Chapter 1. Introducing Phoenix • 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

