
Extracted from:

Programming Phoenix ≥ 1.4
Productive |> Reliable |> Fast

This PDF file contains pages extracted from Programming Phoenix ≥ 1.4, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Phoenix ≥ 1.4
Productive |> Reliable |> Fast

Chris McCord
Bruce Tate
José Valim

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Jacquelyn Carter
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-226-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

The Anatomy of a Plug
Before we build our plug, let’s take a deep dive into the Plug library and learn
how plugs work from the inside. There are two kinds of plugs: module plugs
and function plugs. A function plug is a single function. A module plug is a
module that provides two functions with some configuration details. Either
way, they work the same.

We have seen both kinds of plugs in use. From the endpoint module in
lib/rumbl_web/endpoint.ex, you can see an example of a module plug:

plug Plug.RequestId

You specify a module plug by providing the module name. In the router, you
can see an example of a function plug:

plug :protect_from_forgery

You specify a function plug with the name of the function as an atom. Because
a module is just a collection of functions, it strengthens the idea that plugs
are just functions.

For our first plug, we’ll write a module plug that encapsulates all the
authentication logic in one place.

Module Plugs
Sometimes you might want to share a plug across more than one module. In
that case, you can use a module plug. To satisfy the Plug specification, a
module plug must have two functions, named init and call.

The simplest possible module plug returns the given options on init and the
given connection on call. This plug does nothing:

defmodule NothingPlug do
def init(opts) do

opts
end

def call(conn, _opts) do
conn

end
end

Remember, a typical plug transforms a connection. The main work of a
module plug happens in call. In our NothingPlug, we simply pass the connection
through without changes. The call will happen at runtime.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

Sometimes, you might want to let the programmer change the behavior of a
plug. We can do that work in the second argument to call, options. In our
NothingPlug, we don’t need any more information to do our job, so we ignore
the options.

Sometimes, you might need Phoenix to do some heavy lifting to transform
options. That’s the job of the init function. Plug uses the result of init as the
second argument to call. In development mode, Phoenix calls init at runtime,
but in production mode, init is called only once, at compile time. This strategy
makes init the perfect place to validate and transform options without slowing
down every request so call can be as fast as possible. Since call is the workhorse
of Plug, we want it to do as little work as possible.

For both module and function plugs, the request interface is the same. conn,
the first argument, is the data we pass through every plug. It has the details
for any request, and we morph it in tiny steps until we eventually send a
response. All plugs take a conn and return a conn.

You’ll see piped functions using a common data structure over and over in
Elixir. The trick that makes this tactic work is having the right common data
structure. Since Plug works with web APIs, our data structure will specify
the typical details of the web server’s domain.

In Phoenix, you’ll see connections, usually abbreviated conn, literally every-
where. At the end of the day, the conn is only a Plug.Conn struct, and it forms
the foundation for Plug.

Plug.Conn Fields
You can find great online documentation for Plug.Conn.3 This structure has the
various fields that web applications need to understand about web requests
and responses. Let’s look at some of the supported fields.

Request fields contain information about the inbound request. They’re parsed
by the adapter for the web server you’re using. Cowboy is the default web
server that Phoenix uses, but you can also choose to plug in your own. These
fields contain strings, except where otherwise specified:

host
The requested host. For example, www.pragprog.com.

method
The request method. For example, GET or POST.

3. http://hexdocs.pm/plug/Plug.Conn.html

• 6

• Click HERE to purchase this book now. discuss

http://hexdocs.pm/plug/Plug.Conn.html
http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

path_info
The path, split into a List of segments. For example, ["admin", "users"].

req_headers
A list of request headers. For example, [{"content-type", "text/plain"}].

scheme
The request protocol as an atom. For example, :https.

You can get other information as well, such as the query string, the remote
IP address, the port, and the like. For Phoenix, if a web request’s information
is available from the web server’s adapter, it’s in Plug.Conn.

Next comes a set of fetchable fields. A fetchable field is empty until you
explicitly request it. These fields require a little time to process, so they’re left
out of the connection by default until you want to explicitly fetch them:

cookies
These are the request cookies with the response cookies.

params
These are the request parameters. Some plugs help to parse these
parameters from the query string, or from the request body.

Next are a series of fields that are used to process web requests and keep
information about the plug pipeline. Here are some of the fields you’ll
encounter:

assigns
This user-defined map contains anything you want to put in it. For
instance, this is where we will keep the authenticated user for the current
request.

halted
Sometimes a connection must be halted, such as a failed authorization.
In this case, the halting plug sets this flag.

You can also find a secret_key_base for everything related to encryption.

• Click HERE to purchase this book now. discuss

The Anatomy of a Plug • 7

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

Since the Plug framework handles the whole life cycle of a request, including
both the request and the response, Plug.Conn provides fields for the response:

resp_body
Initially an empty string, the response body will contain the HTTP response
string when it’s available.

resp_cookies
The resp_cookies has the outbound cookies for the response.

resp_headers
These headers follow the HTTP specification and contain information such
as the response type and caching rules.

status
The response code generally contains 200–299 for success, 300–399 for
redirects, 400–499 for bad client requests such as not-found, and 500+ for
server errors.

Finally, Plug supports some private fields reserved for the adapter and
frameworks:

adapter
Information about the underlying web server is stored here.

private
This field has a map for the private use of frameworks.

Initially, a conn comes in almost blank and is filled out progressively by different
plugs in the pipeline. For example, the endpoint may parse parameters, and
the application developer will set fields primarily in assigns. Functions that
render set the response fields such as status, change the state, and so on.

Plug.Conn also defines many functions that directly manipulate those fields,
which makes abstracting the work of doing more complex operations such
as managing cookies or sending files straightforward.

Now that you have a little more knowledge, we’re ready to transform the
connection by writing our first plug.

Writing an Authentication Plug
The authentication process works in two stages. First, we’ll store the user ID
in the session every time a new user registers or a user logs in. Second, we’ll
check if there’s a new user in the session and store it in conn.assigns for every
incoming request, so it can be accessed in our controllers and views. Let’s
start with the second part because it’s a little easier to follow.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

Create a file called lib/rumbl_web/controllers/auth.ex that looks like this:

authentication/listings/rumbl/lib/rumbl_web/controllers/auth.ex
defmodule RumblWeb.Auth do

import Plug.Conn

def init(opts), do: opts

def call(conn, _opts) do
user_id = get_session(conn, :user_id)
user = user_id && Rumbl.Accounts.get_user(user_id)
assign(conn, :current_user, user)

end
end

Don’t let the init function throw you off. It’s just a simple function to allow
compile time options. Plugs allow data to flow through an application at run
time through the context. Without init, our plug can’t accept any compile time
options.

call checks if a :user_id is stored in the session. If one exists, we look it up and
assign the result in the connection. assign is a function imported from Plug.Conn
that slightly transforms the connection—in this case, storing the user (or nil)
in conn.assigns. That way, the :current_user will be available in all downstream
functions including controllers and views.

Let’s add our plug to the router, at the end of the browser pipeline:

authentication/listings/rumbl/lib/rumbl_web/router.change1.ex
pipeline :browser do

plug :accepts, ["html"]
plug :fetch_session
plug :fetch_flash
plug :protect_from_forgery
plug :put_secure_browser_headers
plug RumblWeb.Auth

end

With our plug in place, we can begin to use this information downstream.

Restricting Access
The RumblWeb.Auth plug processes the request information and transforms the
conn, adding :current_user to conn.assigns. Now, downstream plugs can use it to
find out if a user is logged in.

We’ll use this information to restrict access to pages where we list or show
user information. Specifically, we don’t want to allow users to access the :index
and :show actions of RumblWeb.UserController unless they’re logged in.

• Click HERE to purchase this book now. discuss

Writing an Authentication Plug • 9

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/auth.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/router.change1.ex
http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

Open up RumblWeb.UserController and add the following function:

authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change2.ex
defp authenticate(conn) do

if conn.assigns.current_user do
conn

else
conn
|> put_flash(:error, "You must be logged in to access that page")
|> redirect(to: Routes.page_path(conn, :index))
|> halt()

end
end

If there’s a current user, we return the connection unchanged. Otherwise we
store a flash message and redirect back to our application root. We use halt(conn)
to stop any downstream transformations.

Let’s invoke the authenticate function from index to try it out:

authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change2.ex
def index(conn, _params) do

case authenticate(conn) do
%Plug.Conn{halted: true} = conn ->
conn

conn ->
users = Accounts.list_users()
render(conn, "index.html", users: users)

end
end

Now visit http://localhost:4000/users, where we’re redirected back to the root with
a message telling us to log in, as shown in the figure on page 11.

We could make the same changes to the show action, invoking our plug and
honoring halt. And we could do the same thing every time we require authen-
tication. We’d also have code that’s repetitive, ugly, and error prone. We need
to plug the authenticate function for the actions to be protected. Let’s do that.

Like endpoints and routers, controllers also have their own plug pipeline.
Each plug in the controller pipeline is executed in order, before the action is
invoked. The controller pipeline lets us explicitly choose which actions fire
any given plug.

To plug the authenticate function, we must first make it a function plug. A
function plug is any function that receives two arguments—the connection

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change2.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change2.ex
http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

and a set of options—and returns the connection. With a minor tweak, we
can satisfy that contract. You need only add an options variable, which you’ll
ignore:

authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
defp authenticate(conn, _opts) do

if conn.assigns.current_user do
conn

else
conn
|> put_flash(:error, "You must be logged in to access that page")
|> redirect(to: Routes.page_path(conn, :index))
|> halt()

end
end

Now let’s plug it in our controller, right after alias Rumbl.Accounts.User:

authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
plug :authenticate when action in [:index, :show]

Then, change the index action back to its previous state, like this:

authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
def index(conn, _params) do

users = Accounts.list_users()
render(conn, "index.html", users: users)

end

Visit http://localhost:4000/users to see our plug in action. We redirect, exactly as
we should.

• Click HERE to purchase this book now. discuss

Writing an Authentication Plug • 11

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

Let’s take a minute to appreciate the code we’ve written so far. A small change
to our authentication lets us plug it before every action. We can also share it
with any other controllers or even move it to a router pipeline, restricting
whole sections of our application with minor changes. None of these features
relies on magical inheritance mechanisms, only our explicit lists of functions
in our plug pipelines.

At this point, you may also be wondering what happened with halt. When we
changed the index action, we had to explicitly check if the connection halted
or not, before acting on it. Plug pipelines explicitly check for halted: true between
every plug invocation, so the halting concern is neatly solved by Plug.

In fact, you’re seeing Elixir macro expansion in action. Let’s take an arbitrary
example. Suppose you write code like this:

plug :one
plug Two
plug :three, some: :option

It would compile to:

case one(conn, []) do
%Plug.Conn{halted: true} = conn -> conn
conn ->

case Two.call(conn, Two.init([])) do
%Plug.Conn{halted: true} = conn -> conn
conn ->

case three(conn, some: :option) do
%Plug.Conn{halted: true} = conn -> conn
conn -> conn

end
end

end

Elixir macros and macro expansion are beyond the scope of this book. What
you need to know is that at some point in the compile process, Elixir would
translate the first example to the second. Conceptually, not much is happening
here, and that’s exactly the beauty behind Plug. For each plug, we invoke it
with the given options, check if the returned connection halted, and move
forward if it didn’t. It’s a simple abstraction that allows us to express and
compose both simple and complex functionality.

With all that said, we already have a mechanism for loading data from the
session and using it to restrict user access. But we still don’t have a mecha-
nism to log the users in.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

Logging In
Let’s add a tiny function to RumblWeb.Auth that receives the connection and the
user, and stores the user ID in the session:

authentication/listings/rumbl/lib/rumbl_web/controllers/auth.change1.ex
def login(conn, user) do

conn
|> assign(:current_user, user)
|> put_session(:user_id, user.id)
|> configure_session(renew: true)

end

As you recall, the Plug.Conn struct has a field called assigns. We call setting a
value in that structure an assign. Our function stores the given user as the
:current_user assign, puts the user ID in the session, and finally configures the
session, setting the :renew option to true. The last step is extremely important
and it protects us from session fixation attacks. It tells Plug to send the session
cookie back to the client with a different identifier, in case an attacker knew,
by any chance, the previous one.

Let’s go back to the RumblWeb.UserController.create action and change it to call the
login function after we insert the user in the database:

authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change2.ex
def create(conn, %{"user" => user_params}) do

case Accounts.register_user(user_params) do
{:ok, user} ->
conn
|> RumblWeb.Auth.login(user)
|> put_flash(:info, "#{user.name} created!")
|> redirect(to: Routes.user_path(conn, :index))

{:error, %Ecto.Changeset{} = changeset} ->
render(conn, "new.html", changeset: changeset)

end
end

Now visit http://localhost:4000/users/new, register a new user, and try to access the
pages we restricted previously. As you can see, the user can finally access them.

• Click HERE to purchase this book now. discuss

Writing an Authentication Plug • 13

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/auth.change1.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change2.ex
http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

