
Extracted from:

Programming Phoenix ≥ 1.4
Productive |> Reliable |> Fast

This PDF file contains pages extracted from Programming Phoenix ≥ 1.4, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Phoenix ≥ 1.4
Productive |> Reliable |> Fast

Chris McCord
Bruce Tate
José Valim

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Jacquelyn Carter
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-226-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 7

Ecto Queries and Constraints
In the previous chapter, we extended our application domain by associating
videos to users and categories. Now we want our users to select which cate-
gory a video belongs to upon video creation. To build this feature, you’ll need
to learn how to programmatically populate the database with a hardcoded
list of categories and add those new features to our context. Along the way
we’ll explore some of the different ways you can use Ecto to retrieve data from
the database.

We want to build our feature safely so that corrupt data can’t creep into our
database, so we’ll spend some time working with database constraints. Database
engines like PostgreSQL are called relational for a reason. A tremendous
amount of time and effort has gone into tools and features that help developers
define and enforce the relationships between tables. Instead of treating the
database as pure dumb storage, Ecto uses the strengths of the database to
help keep the data consistent. You’ll learn about error-reporting strategies
so you’ll know when to report an error and when to let it crash, letting other
application layers handle the problem.

Let’s get started.

Seeding and Associating Categories
Let’s associate videos and categories. The first step is to make sure categories
actually exist in our database by using seed data. Then we will change our
web interface to allow users to pick the category for a new video.

Setting Up Category Seed Data
We need to define a handful of initial categories for our application to use.
We could start an IEx session and directly invoke the repository to do that,

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

but this approach has some issues. If we do this work manually, each team-
mate will have to do the same as soon as they want to take our application
for a spin. Once our application grows in size, having to populate each table
in our application with relevant data can get long and tedious.

Furthermore, categories won’t have a web interface where we can manage
them, so we need a mechanism to create them in production programatically.
Elixir is a great language for writing scripts so let’s create a small one to insert
data in the database. We’ll let that new script use a function in our Multimedia
context to create the necessary records.

Phoenix already defines a convention for seeding data. Open up priv/repo/seeds.exs
and read the comments Phoenix generated for us. Phoenix will make sure
that our database is appropriately populated. We only need to drop in a script
that uses our repository to directly add the data we want. Then, we’ll be able
to run Mix commands when it’s time to create the data.

Since the seed script may be executed multiple times, namely every time more
seed data is added, we need to make sure our seed script won’t fail or won’t
generate duplicated categories every time it runs.

Let’s see what happens when we create a category that already exists. Open
up IEx and key this in:

iex> Rumbl.Repo.insert! %Rumbl.Multimedia.Category{name: "Test"}
%Rumbl.Multimedia.Category{

__meta__: #Ecto.Schema.Metadata<:loaded, "categories">,
id: 1,
inserted_at: ~N[2019-05-19 13:06:12],
name: "hello",
updated_at: ~N[2019-05-19 13:06:12]

}

So far, so good. We used the insert! repository function, which will raise an
error if anything goes wrong. Let’s run the same command again:

iex> Rumbl.Repo.insert! %Rumbl.Multimedia.Category{name: "Test"}
** (Ecto.ConstraintError) constraint error when attempting to insert struct:

* categories_name_index (unique_constraint)

...

The changeset has not defined any constraint.

Now Ecto has raised an a ConstraintError, letting us know that the unique_constraint
defined in our database did not allow the operation to succeed. Ecto also tells
us how to convert this constraint error into a changeset error, a technique
we will employ later in this chapter.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

However, in this particular case, instead of returning errors as part of a
changeset, we would rather create the category only if it doesn’t exist. Perhaps,
we could write this operation as:

Repo.get_by(Category, name: name) || Repo.insert!(%Category{name: name})

While this behavior would likely be fine for our seed scripts, this idiom is
inherently unsafe, and we should generally avoid it. For instance, if two
users are trying to create a new category with the same name at the same
time, the Repo.get_by(Category, name: name) would return nil to both, causing both
of them to insert the same category. Thanks to our uniqueness constraint,
only one of those operations will succeed and we will not get duplicate cat-
egories, but the other user would get an error page, leading to a poor user
experience.

The answer to the problem is once more to let the database manage the data
integrity. In particular, we want to let the database manage what happens
when there is a conflict with the data we are inserting. This feature is com-
monly known as an “Upsert” because it is common to update the data
whenever there is a conflict during an insert. In this case, we want to simply
ignore the conflict.

Ecto allows us to do exactly that via the :on_conflict option:

iex> Rumbl.Repo.insert! %Rumbl.Multimedia.Category{name: "hello"},
...> on_conflict: :nothing
%Rumbl.Multimedia.Category{

__meta__: #Ecto.Schema.Metadata<:loaded, "categories">,
id: nil,
inserted_at: ~N[2019-05-19 13:06:22],
name: "hello",
updated_at: ~N[2019-05-19 13:06:22]

}

The default value for :on_conflict is :raise. Once we change it to :nothing, no exceptions
are raised and you can see the returned category has a nil id, indicating that
indeed the category was not inserted. Upserts allow us to do many different
things in case of conflicts, from updating certain fields to even performing
whole queries. The downside is that the upsert behavour is often database
specific, so make sure to explore the different options available to your
database of choice. You can learn more about upserts in the documention
for Repo.insert.1

1. https://hexdocs.pm/ecto/Ecto.Repo.html#c:insert/2-upserts

• Click HERE to purchase this book now. discuss

Seeding and Associating Categories • 7

https://hexdocs.pm/ecto/Ecto.Repo.html#c:insert/2-upserts
http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

Finally, let’s expose this operation in our Multimedia context with a new function
called create_category!, like this:

queries/listings/rumbl/lib/rumbl/multimedia.change1.ex
alias Rumbl.Multimedia.Category

def create_category!(name) do
Repo.insert!(%Category{name: name}, on_conflict: :nothing)

end

Now, use the new function in the seeds script like this:

queries/listings/rumbl/priv/repo/seeds.change1.exs
alias Rumbl.Multimedia

for category <- ~w(Action Drama Romance Comedy Sci-fi) do
Multimedia.create_category!(category)

end

We use the sigil ~w to define a list of words. Each word represents a category.
We then traverse the list of category names, writing them to the database
with the new Multimedia.create_category! function.

Let’s run the seeds file with mix run:

$ mix run priv/repo/seeds.exs

Presto! We have categories.

Associating Videos and Categories

Now that we’ve populated our database with categories, we want to allow
users to choose a category when creating or editing a video. To do so, we’ll
do all of the following:

• Fetch all category names and IDs from the database
• Sort them by the name
• Pass them into the view as part of a select input

To build this feature, we’ll need to start with a query. Let’s spend a little time
with Ecto exploring queries a little more deeply. Fire up your project in IEx,
and let’s warm up with some queries:

iex> import Ecto.Query
iex> alias Rumbl.Repo
iex> alias Rumbl.Multimedia.Category

Importing Ecto.Query makes the Ecto query language available to us. That module
plays some games with macros to provide a simple and beautiful query syntax

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/lib/rumbl/multimedia.change1.ex
http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/priv/repo/seeds.change1.exs
http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

with as little ceremony as possible. Since it’s a framework in such a central
part of database development, the tradeoff of more complexity for the library
against more productivity for users makes sense. We also alias Repo and Cate-
gory. If you find yourself always issuing the same set of commands in a project
directory, you can include them in a file called .iex.exs. If you want more details,
you can read about customizing iex.2

iex> query = from c in Category,
...> select: c.name
iex> Repo.all query

First, we create a query. In this case:

• from is a macro that builds a query.
• c in Category means we’re pulling rows (labeled c) from the Category schema.
• select: c.name means we’re going to return only the name field.

Repo.all is simply a repository function that takes a query and returns all rows.
You can see Ecto returns a few debugging lines that contain the exact SQL
query we’re sending to the database, and the resulting five category names:

[debug] QUERY OK source="categories" db=1.9ms
SELECT c0."name" FROM "categories" AS c0 []

["Action", "Drama", "Romance", "Comedy", "Sci-fi"]

Ecto’s real purpose is to efficiently translate Elixir concepts into a language
the database understands. For us, that language will be SQL. We can order
category names alphabetically by passing the :order_by option to our query.
We can also return a tuple from both the id and name fields.

Let’s give it another try:

iex> Repo.all from c in Category,
...> order_by: c.name,
...> select: {c.name, c.id}
[

{"Action", 1},
{"Comedy", 4},
{"Drama", 2},
{"Romance", 3},
{"Sci-fi", 5}

]

However, we rarely need to define the whole query at once. Ecto queries are
composable, which means you can define the query bit by bit:

2. https://hexdocs.pm/iex/IEx.html

• Click HERE to purchase this book now. discuss

Seeding and Associating Categories • 9

https://hexdocs.pm/iex/IEx.html
http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

iex> query = Category
Category
iex> query = from c in query, order_by: c.name
#Ecto.Query<>

iex> query = from c in query, select: {c.name, c.id}
#Ecto.Query<>

iex> Repo.all(query)
[

{"Action", 1},
{"Comedy", 4},
{"Drama", 2},
{"Romance", 3},
{"Sci-fi", 5}

]

This time, instead of building the whole query at once, we write it in small
steps, adding a little more information along the way. You’ll see this strategy
quite frequently in Elixir because it allows us to use pipes to build complex
queries from simpler ones, bit by bit. This strategy works because Ecto defines
something called the queryable protocol. from receives a queryable, and you can
use any queryable as a base for a new query. A queryable is an Elixir protocol.
Recall that protocols like Enumerable (for Enum) define APIs for specific language
features. This one defines the API for something that can be queried.

That’s also why we can call Repo.all either as Repo.all(Category) or Repo.all(query):
because both Category and query implement the so-called Ecto.Queryable protocol.
By abiding by the protocol, you can quickly layer together sophisticated
queries with Ecto.Query, maintaining clear boundaries between your layers and
adding sophistication without complexity.

Let’s talk briefly about which pieces of our categories will go where. We’ll put
query functions in our schema layer. Complex interactions, such as those
between our multimedia and users, will go in in contexts. This organization
will leave controllers as thin and simple as possible.

Let’s implement the layered, composable query strategy. To make our queries
compose well, we need functions that take a query as the first argument and
return a query. We’ll add an alphabetical function to our Category module which
will sort the results:

queries/listings/rumbl/lib/rumbl/multimedia/category.change1.ex
import Ecto.Query

def alphabetical(query) do
from c in query, order_by: c.name

end

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/lib/rumbl/multimedia/category.change1.ex
http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

To be more precise, our alphabetical function must receive and return a
queryable. With our function in place, let’s expose this new feature from a well-
named function in our Multimedia context:

queries/listings/rumbl/lib/rumbl/multimedia.change1.ex
def list_alphabetical_categories do

Category
|> Category.alphabetical()
|> Repo.all()

end

In our user interface, we plan to build a picker that will need names for our
users and ids for our backend relationships. We added a Multimedia.list_alphabet-
ical_categories to fetch the data in the order we want. Let’s complete the circle
by using our new functions to load all the categories in our VideoController and
shape the data into a select drop-down within our VideoView:

queries/listings/rumbl/lib/rumbl_web/controllers/video_controller.change1.ex
plug :load_categories when action in [:new, :create, :edit, :update]

defp load_categories(conn, _) do
assign(conn, :categories, Multimedia.list_alphabetical_categories())

end

We define a plug that calls our new Multimedia.list_alphabetical_categories function.
We also specify the actions that need the categories in the when clause. Now,
all sorted categories are available inside @categories in our templates for the
actions we specified. You can see how adding our context layer simplifies our
controller code.

Let’s change the video form template at lib/rumbl_web/templates/video/form.html.eex
to include a new select field:

queries/listings/rumbl/lib/rumbl_web/templates/video/form.change1.html.eex
<%= label f, :category_id, "Category"%>
<%= select f, :category_id, category_select_options(@categories),

prompt: "Choose a category" %>

We added a new select field which builds a list of section options using catego-
ry_select_options. Since that function is new, let’s implement it inside our video
view in lib/rumbl_web/views/video_view.ex, like this:

queries/listings/rumbl/lib/rumbl_web/views/video_view.change1.ex
defmodule RumblWeb.VideoView do

use RumblWeb, :view

def category_select_options(categories) do
for category <- categories, do: {category.name, category.id}

end
end

• Click HERE to purchase this book now. discuss

Seeding and Associating Categories • 11

http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/lib/rumbl/multimedia.change1.ex
http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/lib/rumbl_web/controllers/video_controller.change1.ex
http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/lib/rumbl_web/templates/video/form.change1.html.eex
http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/lib/rumbl_web/views/video_view.change1.ex
http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

Remember, views are just modules with pure functions. We’ll use the name
as the label for each option in a select, and the id as the option value, and a
simple for comprehension to walk through the available categories.

That’s it. Now we can create videos with optional categories. We’re doing so
with query logic that lives in its own module so we’ll be able to better test and
extend those features. Try it out by visiting http://localhost:4000/manage/videos/new:

Before we finish this chapter, we’ll add the proper mechanisms to ensure that
the category sent by the user is valid. But first, let’s take this opportunity to
explore Ecto queries a little more deeply.

Diving Deeper into Ecto Queries
So far, you know Ecto queries like a YouTube dog knows how to ride a bike.
We’ve written our first query and we know that queries compose, but we still
haven’t explored many concepts. It’s time to take off the training wheels and
see more-advanced examples.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

Open up IEx once more, and let’s retrieve a single user:

iex> import Ecto.Query
iex> alias Rumbl.Repo
iex> alias Rumbl.Accounts.User
iex> alias Rumbl.Multimedia.Video

iex> username = "josevalim"
"josevalim"

iex> Repo.one(from u in User, where: u.username == ^username)
...
%Rumbl.Accounts.User{username: "josevalim", ...}

We’re using the same concepts you learned before:

• Repo.one means return one row.

• from u in User means we’re reading from the Accounts.User schema.

• where: u.username == ^username means return the row where u.username ==
^username. The ^ (caret) is used for injecting a value or expression for
interpolation into an Ecto query

• When the select part is omitted, the whole struct is returned, as if we’d
written select: u.

Repo.one doesn’t mean “return the first result.” It means “one result is expected,
so if there’s more, fail.” This query language is a little different from what you
may have seen before. This API is not just a composition of strings. By relying
on Elixir macros, Ecto knows where user-defined variables are located, so it’s
easier to protect the user from security flaws like SQL-injection attacks.

Ecto queries also do a good part of the query normalization at compile time,
so you’ll see better performance while leveraging the information in our
schemas for casting values at runtime. Let’s see some of these concepts in
action by using an incorrect type in a query:

iex> username = 123
123

iex> Repo.all(from u in User, where: u.username == ^username)

** (Ecto.Query.CastError) iex:7: value `123` in `where`
cannot be cast to type :string in query:

from u in Rumbl.Accounts.User,
where: u.username == ^123,
select: u

• Click HERE to purchase this book now. discuss

Diving Deeper into Ecto Queries • 13

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

The ^ operator interpolates values into our queries where Ecto can scrub
them and safely put them to use, without the risk of SQL injection. Armed
with our schema definition, Ecto is able to cast the values properly for us and
match up Elixir types with the expected database types.

In other words, we define the repository and schemas and let Ecto changesets
and queries tie them up together. This strategy gives developers the proper
level of isolation because we mostly work with data, which is straightforward,
and leave all complex operations to the repository.

The Query API
So far, we’ve used only the == operator in queries, but Ecto supports a wide
range of them:

• Comparison operators: ==, !=, <=, >=, <, >
• Boolean operators: and, or, not
• Inclusion operator: in
• Search functions: like and ilike
• Null check functions: is_nil
• Aggregates: count, avg, sum, min, max
• Date/time intervals: datetime_add, date_add
• General: fragment, field, and type

In short, you can use many of the same comparison, inclusion, search, and
aggregate operations for a typical query that you’d use in Elixir. You can see
documentation and examples for many of them in the Ecto.Query.API documen-
tation.3 Those are the basic features you’re going to use as you build queries.
You’ll use them from two APIs: keywords syntax and pipe syntax. Let’s see
what each API looks like.

Writing Queries with Keywords Syntax
The first syntax expresses different parts of the query by using a keyword
list. For example, take a look at this code for counting all users with user-
names starting with j or c. You can see keys for both :select and :where:

iex> Repo.one from u in User,
...> select: count(u.id),
...> where: ilike(u.username, "j%") or
...> ilike(u.username, "c%")

2

3. http://hexdocs.pm/ecto/Ecto.Query.API.html

• 14

• Click HERE to purchase this book now. discuss

http://hexdocs.pm/ecto/Ecto.Query.API.html
http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

The u variable is bound as part of Ecto’s from macro. Throughout the query,
it represents entries from the User schema. If you attempt to access u.unknown
or match against an invalid type, Ecto raises an error. Bindings are useful
when our queries need to join across multiple schemas. Each join in a query
gets a specific binding.

Let’s also build a query to count all users:

iex> users_count = from u in User, select: count(u.id)

#Ecto.Query<from u in Rumbl.Accounts.User, select: count(u.id)>

Simple enough. We use from to build a query, selecting count(u.id). Now, let’s
say that we want to take advantage of this fantastic count feature to build some
more-complex queries. Since the best usernames have a j, let’s count the
users that match a case-insensitive search for j, like this:

iex> j_users = from u in users_count, where: ilike(u.username, ^"%j%")

#Ecto.Query<from u in Rumbl.Accounts.User,
where: ilike(u.username, ^"%j%"), select: count(u.id)>

Beautiful. You’ve built a new query, based on the old one. Although we’ve
used the same binding as before, u, we didn’t have to. You’re free to name
your query variables however you like, because Ecto doesn’t use their names.
The following query is equivalent to the previous one:

iex> j_users = from q in users_count, where: ilike(q.username, ^"%j%")

#Ecto.Query<from u in Rumbl.Accounts.User,
where: ilike(u.username, ^"%j%"), select: count(u.id)>

You can use that composition wherever you have a query, be it written with
the keyword syntax or the pipe syntax that you’ll learn next.

• Click HERE to purchase this book now. discuss

Diving Deeper into Ecto Queries • 15

http://pragprog.com/titles/phoenix14
http://forums.pragprog.com/forums/phoenix14

