
Extracted from:

Programming Machine Learning
From Coding to Deep Learning

This PDF file contains pages extracted from Programming Machine Learning,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Machine Learning
From Coding to Deep Learning

Paolo Perrotta

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Katharine Dvorak
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-660-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—March 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To my wife Irene,

making my every day.

Programming vs. Machine Learning
Here’s an example of the difference between machine learning (or simply “ML”)
and regular programming. Imagine building a program that plays video games.
With traditional programming, that program might look something like this:

enemy = get_nearest_enemy()
if enemy.distance() < 100:

decelerate()
if enemy.is_shooting():

raise_shield()
else:

if health() > 0.25:
shoot()

else:
rotate_away_from(enemy)

else:
...a lot more code

…and so on. Most of the code would be a big collection of if..else statements,
mixed with imperative commands such as shoot().

Granted, modern languages give us the means to replace those ugly nested
ifs with more pleasant constructs—polymorphism, pattern matching, or event-
driven calls. The core idea of programming, however, stays the same: you tell
the computer what to look for, and you tell it what to do. You must list every
condition and define every action.

This approach has served us well, but it has a few flaws. First, you must be
exhaustive. You can probably imagine dozens or hundreds of specific situa-
tions that you’d have to cover in that video game–playing program. What
happens if the enemy is approaching, but there is a power-up between you
and the enemy, and the power-up is shielding you from enemy fire? A human
player would quickly notice the situation and take advantage of it. Your pro-
gram… well, it depends. If you coded for that special case, then your program
will deal with it—but we know how hard it is to cover all special cases, even
in structured domains like accounting. Good luck listing each and every
possible special case in complex domains like playing video games, driving a
truck, or recognizing an image!

Even if you could list all those decisions, you’d have to know how to take
them in the first place. That’s a second limitation of programming, and a
showstopper in some domains. For example, take a computer vision task like
our original problem: identifying pneumonia in chest scans.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pplearn
http://forums.pragprog.com/forums/pplearn

We don’t really know how a human radiologist recognizes pneumonia. Yes,
we have a high-level idea of it, like: “the radiologist looks for opaque areas.”
However, we don’t know how the radiologist’s brain recognizes and evaluates
an opaque area. In some cases, the expert herself cannot tell you how she
came to a diagnosis, except for a rather vague: “I know by experience that
pneumonia doesn’t look like this.” Since we don’t know how those decisions
happen, we cannot instruct a computer to take them. That is a problem
shared by all typically human tasks, such as tasting beer, or understanding
a sentence.

Machine learning, on the other hand, turns traditional programming on its
head: instead of giving instructions to the computer, ML is about giving data
to the computer, and asking it to figure out what to do:

The idea of a computer “figuring out” anything sounds like wishful thinking,
but there are actually a few different ways to make it happen. In case you’re
wondering, all of them still require running code. That code, however, isn’t a
step-by-step procedure to solve the problem, like in traditional programming.
Instead, the code in machine learning tells the computer how to crunch the
data, so that the computer can solve the problem by itself.

As an example, here is one way that a computer can figure out how to play
a video game. Imagine an algorithm that learns how to play by trial and error.
It starts by giving random commands: “shoot,” “decelerate,” “rotate,” and so
on. If those commands eventually lead to success, such as a higher score,
the algorithm remembers this experience. If they lead to failure, such as
death, the algorithm also takes note. At the same time, it also takes note of
the state of the game: where are the enemies, the obstacles, and the power-
ups? How much health do we have? And so on.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pplearn
http://forums.pragprog.com/forums/pplearn

From then on, whenever it encounters a similar game state, the algorithm is
a bit more likely to attempt the successful actions than the unsuccessful
ones. After many cycles of trial and error, such a program would become a
competent player. In 2013, a system using this approach reached superhuman
skills in a bunch of old Atari games.2

This style of ML is called reinforcement learning. Reinforcement learning works
pretty much like dog training: “good” behavior is rewarded so that the dog
does more of it.

(I also tried the same approach with my cat. So far, I failed.)

Reinforcement learning is just one way to let a computer figure out a problem.
In this book, we’ll focus on another style of machine learning—arguably the
most popular one. Let’s talk about it.

2. deepmind.com/research/publications/playing-atari-deep-reinforcement-learning

• Click HERE to purchase this book now. discuss

Programming vs. Machine Learning • 9

https://deepmind.com/research/publications/playing-atari-deep-reinforcement-learning
http://pragprog.com/titles/pplearn
http://forums.pragprog.com/forums/pplearn

