
Extracted from:

Metaprogramming Ruby 2
Program Like the Ruby Pros

This PDF file contains pages extracted from Metaprogramming Ruby 2, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Metaprogramming Ruby 2
Program Like the Ruby Pros

Paolo Perrotta

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Lynn Beighley (editor)
Potomac Indexing, LLC (indexer)
Cathleen Small (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-94122-212-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2014

http://pragprog.com
rights@pragprog.com

I was thirteen, and I was tired of hanging
out at the local toy shop to play Intellivision

games. I wanted my own videogame console.
I’d been bugging my parents for a while,

with no success.

Then I found an alternative: I could play
games on a computer as well. So I asked my

parents to buy me one of those new 8-bit
computers—you know, to learn useful stuff.
My dad agreed, and my mom took me to the
shop and bought me a Sinclair ZX Spectrum.

Mom, Dad… Here is something that I should’ve
told you more often in my life: thank you. This
book is dedicated to the two of you. I’m hoping
it will make you proud, just like your once-kid
is proud of you. And while I’m here, I have

something to confess about that life-changing
day thirty years ago: I didn’t really want to

learn stuff. I just wanted to play.

In fact, that’s what I’ve been doing
all these years.

Blocks Are Closures
Where you find there is more to blocks than meets the eye and you learn how
to smuggle variables across scopes.

As Bill notes on a piece of scratch paper, a block is not just a floating piece
of code. You can’t run code in a vacuum. When code runs, it needs an envi-
ronment: local variables, instance variables, self….

Figure 6—Code that runs is actually made up of two things: the code itself and a set of
bindings.

Because these entities are basically names bound to objects, you can call
them the bindings for short. The main point about blocks is that they are all
inclusive and come ready to run. They contain both the code and a set of
bindings.

You’re probably wondering where the block picks up its bindings. When you
define the block, it simply grabs the bindings that are there at that moment,
and then it carries those bindings along when you pass the block into a
method:

blocks/blocks_and_bindings.rb
def my_method

x = "Goodbye"
yield("cruel")

end

x = "Hello"
my_method {|y| "#{x}, #{y} world" } # => "Hello, cruel world"

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ppmetr2/code/blocks/blocks_and_bindings.rb
http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

When you create the block, you capture the local bindings, such as x. Then
you pass the block to a method that has its own separate set of bindings. In
the previous example, those bindings also include a variable named x. Still,
the code in the block sees the x that was around when the block was defined,
not the method’s x, which is not visible at all in the block.

You can also define additional bindings inside the block, but they disappear
after the block ends:

blocks/block_local_vars_failure.rb
def just_yield

yield
end

top_level_variable = 1

just_yield do
top_level_variable += 1
local_to_block = 1

end

top_level_variable # => 2
local_to_block # => Error!

Because of the properties above, a computer scientist would say that a block
is a closure. For the rest of us, this means a block captures the local bindings
and carries them along with it.

So, how do you use closures in practice? To understand that, take a closer
look at the place where all the bindings reside—the scope. Here you’ll learn
to identify the spots where a program changes scope, and you’ll encounter a
particular problem with changing scopes that can be solved with closures.

Scope
Imagine being a little debugger making your way through a Ruby program.
You jump from statement to statement until you finally hit a breakpoint. Now
catch your breath and look around. See the scenery around you? That’s your
scope.

You can see bindings all over the scope. Look down at your feet, and you see
a bunch of local variables. Raise your head, and you see that you’re standing
within an object, with its own methods and instance variables; that’s the
current object, also known as self. Farther away, you see the tree of constants
so clear that you could mark your current position on a map. Squint your
eyes, and you can even see a bunch of global variables off in the distance.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ppmetr2/code/blocks/block_local_vars_failure.rb
http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

But what happens when you get tired of the scenery and decide to move on?

Changing Scope

This example shows how scope changes as your program runs, tracking the
names of bindings with the Kernel#local_variables method:

blocks/scopes.rb
v1 = 1
class MyClass

v2 = 2
local_variables # => [:v2]
def my_method

v3 = 3
local_variables

end
local_variables # => [:v2]

end

obj = MyClass.new
obj.my_method # => [:v3]
obj.my_method # => [:v3]
local_variables # => [:v1, :obj]

Track the program as it moves through scopes. It starts within the top-level
scope that you read about in The Top Level, on page ?. After defining v1 in
the top-level scope, the program enters the scope of MyClass’s definition. What
happens then?

Some languages, such as Java and C#, allow “inner scopes” to see variables
from “outer scopes.” That kind of nested visibility doesn’t happen in Ruby,
where scopes are sharply separated: as soon as you enter a new scope, the
previous bindings are replaced by a new set of bindings. This means that
when the program enters MyClass, v1 “falls out of scope” and is no longer visible.

In the scope of the definition of MyClass, the program defines v2 and a method.
The code in the method isn’t executed yet, so the program never opens a new
scope until the end of the class definition. There, the scope opened with the
class keyword is closed, and the program gets back to the top-level scope.

What happens when the program creates a MyClass object and calls my_method
twice? The first time the program enters my_method, it opens a new scope and
defines a local variable, v3. Then the program exits the method, falling back
to the top-level scope. At this point, the method’s scope is lost. When the
program calls my_method a second time, it opens yet another new scope, and
it defines a new v3 variable (unrelated to the previous v3, which is now lost).

• Click HERE to purchase this book now. discuss

Blocks Are Closures • 9

http://media.pragprog.com/titles/ppmetr2/code/blocks/scopes.rb
http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

Global Variables and Top-Level Instance Variables

Global variables can be accessed by any scope:

def a_scope
$var = "some value"

end

def another_scope
$var

end

a_scope
another_scope # => "some value"

The problem with global variables is that every part of the system can change them,
so in no time you’ll find it difficult to track who is changing what. For this reason,
the general rule is this: when it comes to global variables, use them sparingly, if ever.

You can sometimes use a top-level instance variable in place of a global variable.
These are the instance variables of the top-level main object, described in The Top
Level, on page ?:

@var = "The top-level @var"

def my_method
@var

end

my_method # => "The top-level @var"

You can access a top-level instance variable whenever main takes the role of self, as
in the previous example. When any other object is self, the top-level instance variable
is out of scope.

class MyClass
def my_method
@var = "This is not the top-level @var!"

end
end

Being less universally accessible, top-level instance variables are generally considered
safer than global variables—but not by a wide margin.

Finally, the program returns to the top-level scope, where you can see v1 and
obj again. Phew!

Here is the example’s important point: “Whenever the program changes scope,
some bindings are replaced by a new set of bindings.” Granted, this doesn’t
happen to all the bindings each and every time. For example, if a method
calls another method on the same object, instance variables stay in scope
through the call. In general, though, bindings tend to fall out of scope when

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

the scope changes. In particular, local variables change at every new scope.
(That’s why they’re “local.”)

As you can see, keeping track of scopes can be a tricky task. You can spot
scopes more quickly if you learn about Scope Gates.

Scope Gates
There are exactly three places where a program leaves the previous scope
behind and opens a new one:

• Class definitions
• Module definitions
• Methods

Scope changes whenever the program enters (or exits) a class or module def-
inition or a method. These three borders are marked by the keywords class,

Spell: Scope Gatemodule, and def, respectively. Each of these keywords acts like a Scope Gate.

For example, here is the previous example program again, with Scope Gates
clearly marked by comments:

v1 = 1
class MyClass # SCOPE GATE: entering class

v2 = 2
local_variables # => ["v2"]
def my_method # SCOPE GATE: entering def

v3 = 3
local_variables

end # SCOPE GATE: leaving def
local_variables # => ["v2"]

end # SCOPE GATE: leaving class

obj = MyClass.new
obj.my_method # => [:v3]
local_variables # => [:v1, :obj]

Now it’s easy to see that this program opens three separate scopes: the top-
level scope, one new scope when it enters MyClass, and one new scope when
it calls my_method.

There is a subtle difference between class and module on one side and def on
the other. The code in a class or module definition is executed immediately.
Conversely, the code in a method definition is executed later, when you
eventually call the method. However, as you write your program, you usually
don’t care when it changes scope—you only care that it does.

• Click HERE to purchase this book now. discuss

Blocks Are Closures • 11

http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

Now you can pinpoint the places where your program changes scope—the
spots marked by class, module, and def. But what if you want to pass a variable
through one of these spots? This question takes you back to blocks.

Flattening the Scope
The more you become proficient in Ruby, the more you get into difficult situ-
ations where you want to pass bindings through a Scope Gate (11):

blocks/flat_scope_1.rb
my_var = "Success"

class MyClass
We want to print my_var here...
def my_method

..and here
end

end

Scope Gates are quite a formidable barrier. As soon as you walk through one
of them, local variables fall out of scope. So, how can you carry my_var across
not one but two Scope Gates?

Look at the class Scope Gate first. You can’t pass my_var through it, but you
can replace class with something else that is not a Scope Gate: a method call.
If you could call a method instead of using the class keyword, you could capture
my_var in a closure and pass that closure to the method. Can you think of a
method that does the same thing that class does?

If you look at Ruby’s documentation, you’ll find the answer: Class.new is a
perfect replacement for class. You can also define instance methods in the
class if you pass a block to Class.new:

blocks/flat_scope_2.rb
my_var = "Success"

MyClass = Class.new do➤

Now we can print my_var here...➤

puts "#{my_var} in the class definition!"➤

def my_method
...but how can we print it here?

end
end

Now, how can you pass my_var through the def Scope Gate? Once again, you
have to replace the keyword with a method call. Think of the discussion about
Dynamic Methods (?): instead of def, you can use Module#define_method:

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ppmetr2/code/blocks/flat_scope_1.rb
http://media.pragprog.com/titles/ppmetr2/code/blocks/flat_scope_2.rb
http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

blocks/flat_scope_3.rb
my_var = "Success"

MyClass = Class.new do
"#{my_var} in the class definition"

define_method :my_method do➤

"#{my_var} in the method"➤

end➤

end

MyClass.new.my_method➤

require_relative "../test/assertions"
assert_equals "Success in the method", MyClass.new.my_method

Success in the class definition❮
Success in the method

If you replace Scope Gates with method calls, you allow one scope to see
variables from another scope. Technically, this trick should be called nested
lexical scopes, but many Ruby coders refer to it simply as “flattening the
scope,” meaning that the two scopes share variables as if the scopes were

Spell: Flat Scopesqueezed together. For short, you can call this spell a Flat Scope.

Sharing the Scope

Once you know about Flat Scopes (13), you can do pretty much whatever you
want with scopes. For example, assume that you want to share a variable
among a few methods, and you don’t want anybody else to see that variable.
You can do that by defining all the methods in the same Flat Scope as the
variable:

blocks/shared_scope.rb
def define_methods

shared = 0

Kernel.send :define_method, :counter do
shared

end

Kernel.send :define_method, :inc do |x|
shared += x

end
end

define_methods

counter # => 0
inc(4)

• Click HERE to purchase this book now. discuss

Blocks Are Closures • 13

http://media.pragprog.com/titles/ppmetr2/code/blocks/flat_scope_3.rb
http://media.pragprog.com/titles/ppmetr2/code/blocks/shared_scope.rb
http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

counter # => 4

This example defines two Kernel Methods (?). (It also uses Dynamic Dispatch
(?) to access the private class method define_method on Kernel.) Both Kernel#counter
and Kernel#inc can see the shared variable. No other method can see shared,
because it’s protected by a Scope Gate (11)—that’s what the define_methods
method is for. This smart way to control the sharing of variables is called a

Spell: Shared Scope Shared Scope.

Shared Scopes are not used much in practice, but they’re a powerful trick
and a good example of the power of scopes. With a combination of Scope
Gates, Flat Scopes, and Shared Scopes, you can twist and bend your scopes
to see exactly the variables you need, from the place you want. Now that you
wield this power, it’s time for a wrap-up of Ruby closures.

Closures Wrap-Up
Each Ruby scope contains a bunch of bindings, and the scopes are separated
by Scope Gates (11): class, module, and def.

If you want to sneak a binding or two through a Scope Gate, you can use
blocks. A block is a closure: when you define a block, it captures the bindings
in the current environment and carries them around. So you can replace the
Scope Gate with a method call, capture the current bindings in a closure,
and pass the closure to the method.

You can replace class with Class.new, module with Module.new, and def with Module#de-
fine_method. This is a Flat Scope (13), the basic closure-related spell.

If you define multiple methods in the same Flat Scope, maybe protected by
a Scope Gate, all those methods can share bindings. That’s called a Shared
Scope (14).

Bill glances at the road map he created. (See Today's Roadmap, on page ?.)
“Now that you’ve gotten a taste of Flat Scopes, we should move on to something
more advanced: instance_eval.”

• 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

