
Extracted from:

Metaprogramming Ruby 2
Program Like the Ruby Pros

This PDF file contains pages extracted from Metaprogramming Ruby 2, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Metaprogramming Ruby 2
Program Like the Ruby Pros

Paolo Perrotta

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Lynn Beighley (editor)
Potomac Indexing, LLC (indexer)
Cathleen Small (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-94122-212-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2014

http://pragprog.com
rights@pragprog.com

I was thirteen, and I was tired of hanging
out at the local toy shop to play Intellivision

games. I wanted my own videogame console.
I’d been bugging my parents for a while,

with no success.

Then I found an alternative: I could play
games on a computer as well. So I asked my

parents to buy me one of those new 8-bit
computers—you know, to learn useful stuff.
My dad agreed, and my mom took me to the
shop and bought me a Sinclair ZX Spectrum.

Mom, Dad… Here is something that I should’ve
told you more often in my life: thank you. This
book is dedicated to the two of you. I’m hoping
it will make you proud, just like your once-kid
is proud of you. And while I’m here, I have

something to confess about that life-changing
day thirty years ago: I didn’t really want to

learn stuff. I just wanted to play.

In fact, that’s what I’ve been doing
all these years.

CHAPTER 10

Active Support’s Concern Module
In the previous chapter, you saw that the modules in Rails are special: when
you include them, you gain both instance and class methods. How does that
happen?

The answer comes from yet another module: Concern, in the Active Support
library. ActiveSupport::Concern twists and bends the Ruby object model. It
encapsulates the “add class methods to your includer” functionality, and it
makes it easy to roll that functionality into other modules.

ActiveSupport::Concern is easier to understand if you know how it came to exist
in the first place. We’ll start by looking back at Rails’ older versions, before
Concern entered the scene.

Rails Before Concern
The Rails source code has changed a lot through the years, but some basic
ideas haven’t changed much. One of these is the concept behind ActiveRe-
cord::Base. As you’ve seen in ActiveRecord::Base, this class is an assembly of
dozens of modules that define both instance methods and class methods. For
example, Base includes ActiveRecord::Validations, and in the process it gets instance
and class methods.

The mechanism that rolls those methods into Base, however, has changed.
Let’s see how it worked in the beginning.

The Include-and-Extend Trick
Around the times of Rails 2, all validation methods were defined in ActiveRe-
cord::Validations. (Back then, there was no Active Model library.) However, Valida-
tions pulled a peculiar trick:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

gems/activerecord-2.3.2/lib/active_record/validations.rb
module ActiveRecord

module Validations
...

def self.included(base)
base.extend ClassMethods
...

end

module ClassMethods
def validates_length_of(*attrs) # ...
...

end

def valid?
...

end

...
end

end

Does the code above look familiar? You’ve already seen this technique in The
VCR Example, on page ?. Here’s a quick recap. When ActiveRecord::Base includes
Validations, three things happen:

1. The instance methods of Validations, such as valid?, become instance methods
of Base. This is just regular module inclusion.

2. Ruby calls the included Hook Method (?) on Validations, passing ActiveRe-
cord::Base as an argument. (The argument of included is also called base, but
that name has nothing to do with the Base class—instead, it comes from
the fact that a module’s includer is sometimes called “the base class.”)

3. The hook extends Base with the ActiveRecord::Validations::ClassMethods module.
This is a Class Extensions (?), so the methods in ClassMethods become class
methods on Base.

As a result, Base gets both instance methods like valid? and class methods like
validates_length_of.

This idiom is so specific that I hesitate to call it a spell. I’ll refer to it as the
include-and-extend trick. VCR borrowed it from Rails, as did many other Ruby
projects throughout the years. Include-and-extend gives you a powerful way
to structure a library: each module contains a well-isolated piece of function-
ality that you can roll into your classes with a simple include. That functional-
ity can be implemented with instance methods, class methods, or both.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ppmetr2/code/gems/activerecord-2.3.2/lib/active_record/validations.rb
http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

As clever as it is, include-and-extend has its own share of problems. For one,
each and every module that defines class methods must also define a similar
included hook that extends its includer. In a large codebase such as Rails’, that
hook was replicated over dozens of modules. As a result, people often ques-
tioned whether include-and-extend was worth the effort. After all, they
observed, you can get the same result by adding one line of code to the
includer:

class Base
include Validations
extend Validations::ClassMethods
...

Include-and-extend allows you to skip the extend line and just write the include
line. You might argue that removing this line from Base isn’t worth the addi-
tional complexity in Validations.

However, complexity is not include-and-extend’s only shortcoming. The trick
also has a deeper issue—one that deserves a close look.

The Problem of Chained Inclusions
Imagine that you include a module that includes another module. You’ve seen
an example of this in The Validations Modules: ActiveRecord::Base includes
ActiveRecord::Validations, which includes ActiveModel::Validations. What would happen
if both modules used the include-and-extend trick? You can find an answer
by looking at this minimal example:

part2/chained_inclusions_broken.rb
module SecondLevelModule

def self.included(base)
base.extend ClassMethods

end

def second_level_instance_method; 'ok'; end

module ClassMethods
def second_level_class_method; 'ok'; end

end
end

module FirstLevelModule
def self.included(base)

base.extend ClassMethods
end

def first_level_instance_method; 'ok'; end

• Click HERE to purchase this book now. discuss

Rails Before Concern • 9

http://media.pragprog.com/titles/ppmetr2/code/part2/chained_inclusions_broken.rb
http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

module ClassMethods
def first_level_class_method; 'ok'; end

end

include SecondLevelModule
end

class BaseClass
include FirstLevelModule

end

BaseClass includes FirstLevelModule, which in turn includes SecondLevelModule. Both
modules get in BaseClass’s chain of ancestors, so you can call both modules’
instance methods on an instance of BaseClass:

BaseClass.new.first_level_instance_method # => "ok"
BaseClass.new.second_level_instance_method # => "ok"

Thanks to include-and-extend, methods in FirstLevelModule::ClassMethods also
become class methods on BaseClass:

BaseClass.first_level_class_method # => "ok"

SecondLevelModule also uses include-and-extend, so you might expect methods
in SecondLevelModule::ClassMethods to become class methods on BaseClass. However,
the trick doesn’t work in this case:

BaseClass.second_level_class_method # => NoMethodError

Go through the code step by step, and you’ll see where the problem is. When
Ruby calls SecondLevelModule.included, the base parameter is not BaseClass, but
FirstLevelModule. As a result, the methods in SecondLevelModule::ClassMethods become
class methods on FirstLevelModule—which is not what we wanted.

Rails 2 did include a fix to this problem, but the fix wasn’t pretty: instead of
using include-and-extend in both the FirstLevelModule and the SecondLevelModule,
Rails used it only in the FirstLevelModule. Then FirstLevelModule#included forced the
includer to also include the SecondLevelModule, like this:

part2/chained_inclusions_fixed.rb
module FirstLevelModule

def self.included(base)
base.extend ClassMethods
base.send :include, SecondLevelModule➤

end

...

Distressingly, the code above made the entire system less flexible; it forced
Rails to distinguish first-level modules from other modules, and each module

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ppmetr2/code/part2/chained_inclusions_fixed.rb
http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

had to know whether it was supposed to be first-level. (To make things
clumsier, Rails couldn’t call Module#include directly, because it was a private
method—so it had to use a Dynamic Dispatch (?) instead. Recent rubies
made include public, but we’re talking ancient history here.)

At this point in our story, you’d be forgiven for thinking that include-and-
extend created more problems than it solved in the first place. This trick
forced multiple modules to contain the same boilerplate code, and it failed if
you had more than one level of module inclusions. To address these issues,
the authors of Rails crafted ActiveSupport::Concern.

ActiveSupport::Concern
ActiveSupport::Concern encapsulates the include-and-extend trick and fixes the
problem of chained inclusions. A module can get this functionality by extending
Concern and defining its own ClassMethods module:

part2/using_concern.rb
require 'active_support'

module MyConcern
extend ActiveSupport::Concern

def an_instance_method; "an instance method"; end

module ClassMethods
def a_class_method; "a class method"; end

end
end

class MyClass
include MyConcern

end

MyClass.new.an_instance_method # => "an instance method"
MyClass.a_class_method # => "a class method"

In the rest of this chapter I’ll use the word “concern” with a lowercase C to
mean “a module that extends ActiveSupport::Concern,” like MyConcern does in the
example above. In modern Rails, most modules are concerns, including
ActiveRecord::Validations and ActiveModel::Validations.

Let’s see how Concern works its magic.

A Look at Concern’s Source Code
The source code of Concern is quite short but also fairly complicated. It defines
just two important methods: extended and append_features. Here is extended:

• Click HERE to purchase this book now. discuss

ActiveSupport::Concern • 11

http://media.pragprog.com/titles/ppmetr2/code/part2/using_concern.rb
http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

gems/activesupport-4.1.0/lib/active_support/concern.rb
module ActiveSupport

module Concern
class MultipleIncludedBlocks < StandardError #:nodoc:
def initialize

super "Cannot define multiple 'included' blocks for a Concern"
end

end

def self.extended(base)
base.instance_variable_set(:@_dependencies, [])

end

...

When a module extends Concern, Ruby calls the extended Hook Method (?), and
extended defines an @_dependencies Class Instance Variable (?) on the includer.
I’ll show you what happens to this variable in a few pages. For now, just
remember that all concerns have it, and it’s initially an empty array.

To introduce Concern#append_features, the other important method in Concern, let
me take you on a very short side-trip into Ruby’s standard libraries.

Module#append_features

Module#append_features is a core Ruby method. It’s similar to Module#included, in
that Ruby will call it whenever you include a module. However, there is an
important difference between append_features and included: included is a Hook
Method that is normally empty, and it exists only in case you want to override
it. By contrast, append_features is where the real inclusion happens. append_features
checks whether the included module is already in the includer’s chain of
ancestors, and if it’s not, it adds the module to the chain.

There is a reason why you didn’t read about append_features in the first part of
this book: in your normal coding, you’re supposed to override included, not ap-
pend_features. If you override append_features, you can get some surprising results,
as in the following example:

part2/append_features.rb
module M

def self.append_features(base); end
end

class C
include M

end

C.ancestors # => [C, Object, Kernel, BasicObject]

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ppmetr2/code/gems/activesupport-4.1.0/lib/active_support/concern.rb
http://media.pragprog.com/titles/ppmetr2/code/part2/append_features.rb
http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

As the code above shows, by overriding append_features you can prevent a
module from being included at all. Interestingly, that’s exactly what Concern
wants to do, as we’ll see soon.

Concern#append_features

Concern defines its own version of append_features.

gems/activesupport-4.1.0/lib/active_support/concern.rb
module ActiveSupport

module Concern
def append_features(base)

...

Remember the Class Extension (?) spell? append_features is an instance method
on Concern, so it becomes a class method on modules that extend Concern. For
example, if a module named Validations extends Concern, then it gains a Valida-
tion.append_features class method. If this sounds confusing, look at this picture
showing the relationships between Module, Concern, Validations, and Validation’s
singleton class:

Figure 10—ActiveSupport::Concern overrides Module#append_features.

Let’s recap what we’ve learned so far. First, modules that extend Concern get
an @_dependencies Class Variable. Second, they get an override of append_features.
With those two concepts in place, we can look at the code that makes Concern
tick.

• Click HERE to purchase this book now. discuss

ActiveSupport::Concern • 13

http://media.pragprog.com/titles/ppmetr2/code/gems/activesupport-4.1.0/lib/active_support/concern.rb
http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

Inside Concern#append_features

Here is the code in Concern#append_features:

gems/activesupport-4.1.0/lib/active_support/concern.rb
module ActiveSupport

module Concern
def append_features(base)
if base.instance_variable_defined?(:@_dependencies)

base.instance_variable_get(:@_dependencies) << self
return false

else
return false if base < self
@_dependencies.each { |dep| base.send(:include, dep) }
super
base.extend const_get(:ClassMethods) \

if const_defined?(:ClassMethods)
...

end
end

...

This is a hard piece of code to wrap your brain around, but its basic idea is
simple: never include a concern in another concern. Instead, when concerns
try to include each other, just link them in a graph of dependencies. When a
concern is finally included by a module that is not itself a concern, roll all of
its dependencies into the includer in one fell swoop.

Let’s look at the code step by step. To understand it, remember that it is
executed as a class method of the concern. In this scope, self is the concern,
and base is the module that is including it, which might or might not be a
concern itself.

When you enter append_features, you want to check whether your includer is
itself a concern. If it has an @_dependencies Class Variable, then you know it is
a concern. In this case, instead of adding yourself to your includer’s chain of
ancestors, you just add yourself to its list of dependencies, and you return
false to signal that no inclusion actually happened. For example, this happens
if you are ActiveModel::Validations, and you get included by ActiveRecord::Validations.

What happens if your includer is not itself a concern—for example, when you
are ActiveRecord::Validations, and you get included by ActiveRecord::Base? In this case,
you check whether you’re already an ancestor of this includer, maybe because
you were included via another chain of concerns. (That’s the meaning of base
< self.) If you are not, you come to the crucial point of the entire exercise: you
recursively include your dependencies in your includer. This minimalistic

• 14

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ppmetr2/code/gems/activesupport-4.1.0/lib/active_support/concern.rb
http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

dependency management system solves the issue that you’ve read about in
The Problem of Chained Inclusions, on page 9.

After rolling all your dependent concerns into your includer’s chain of
ancestors, you still have a couple of things to do. First, you must add yourself
to that chain of ancestors, by calling the standard Module.append_features with
super. Finally, don’t forget what this entire machinery is for: you have to extend
the includer with your own ClassMethods module, like the include-and-extend
trick does. You need Kernel#const_get to get a reference to ClassMethods, because
you must read the constant from the scope of self, not the scope of the Concern
module, where this code is physically located.

Concern also contains some more functionality, but you’ve seen enough to
grasp the idea behind this module.

• Click HERE to purchase this book now. discuss

ActiveSupport::Concern • 15

http://pragprog.com/titles/ppmetr2
http://forums.pragprog.com/forums/ppmetr2

