
Extracted from:

Building Table Views with
Phoenix LiveView

Advanced Table UIs for Accessible Data

This PDF file contains pages extracted from Building Table Views with Phoenix
LiveView, published by the Pragmatic Bookshelf. For more information or to
purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Building Table Views with
Phoenix LiveView

Advanced Table UIs for Accessible Data

Peter Ullrich

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Michael Swaine
Copy Editor: L. Sakhi MacMillan
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-973-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Creating the LiveView
Let’s create a new LiveView for implementing the infinity scrolling logic. Create
a new file at lib/meow_web/live/infinity_live.ex and add the following code to it:

defmodule MeowWeb.InfinityLive do
use MeowWeb, :live_view

alias Meow.Meerkats

def render(assigns) do
~H"""
<table>
<tbody id="meerkats"

phx-update="append"
phx-hook="InfinityScroll">

<%= for meerkat <- @meerkats do %>
<tr id={"meerkat-#{meerkat.id}"}>
<td><%= meerkat.id %></td>
<td><%= meerkat.name %></td>

</tr>
<% end %>

</tbody>
</table>
"""

end
end

Let’s have a look at the render/1 function. It generates a HEEx template, which
displays a simple table that renders our meerkat data row by row. This isn’t
very different from our previous table UI, so let’s have a closer look at the
more interesting phx-update and phx-hook tags.

Instructing LiveView How to Handle New Data
The phx-update tag instructs Phoenix LiveView how to behave when our LiveView
updates the data in the @meerkats assign. If you don’t set this tag, it defaults
to replace, which means that it will replace the current content of the table
with the new data from the @meerkats assign.

However, this isn’t quite what we want. When we load the next page of data,
we want to keep the old content in the table and add the new content to the
end of the table. We can instruct LiveView to do exactly that by setting the
phx-update tag to append. Now, LiveView will add new rows to the end of the
table and keep the existing ones. This works well for infinity scrolling because
we can append any new content to the table before the user sees it. This way,
we ensure that the user feels like the content never ends. Hence the infinity

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

in infinity scrolling. For completeness, let’s have a look at the other possible
values for the phx-update tag.

We could instruct LiveView to disregard any updates by setting this tag to
ignore. Now, LiveView will render the table only once and ignore any updates
to the @meerkats assign afterward. This can come in handy when your website
needs to interoperate with JavaScript frameworks for, for example, showing
alerts. Such frameworks typically create and manage the state of their own
HTML elements. If LiveView were to replace these elements every time an
update comes in, it could break the functionality that the framework provides.
Typically, you would set the phx-update tag to ignore on such elements and
handle any updates using LiveView Client Hooks. We’ll talk about those later.

If you wanted to add new rows to the top instead of the end of the table, you
could set the phx-update tag to prepend. This is useful if you want to show the
latest updates always at the top of the table and let them supersede any
previous messages. In that case, LiveView would keep the existing rows but
push them down the table by adding the new rows to the top of the table.

When we want to append or prepend new rows to the table, we need to give
each row a unique identifier. This way, LiveView can track which data entries
already exist in the table and which it needs to add. We accomplish this by
adding the id={"meerkat-#{meerkat.id}"} tag to every table row.

In our case, we can assume that the id of each meerkat is unique because we
use their unique database identifier. If you want to use a different field as a
row identifier, you need to make sure that it is unique, as well, and that you
never show the same row twice. LiveView won’t crash in that case, but the
user’s browser will log an error and LiveView’s updating behavior will become
unpredictable.

Finally, you might have spotted the phx-hook="InfinityScroll" tag already. With
this, we define which LiveView Client Hook should be mounted to the table element.
We’ll dive into client hooks in the next section. For now, all you need to know
is that this hook sends a "load-more" event to our LiveView whenever the user
gets close to the bottom of the page. This causes our LiveView to fetch more
meerkat data and append it to the table before the user reaches the end of
it.

Next, let’s define the mount/3 function for our LiveView. Add the following two
functions underneath the existing render/1 function:

def mount(_params, _session, socket) do
count = Meerkats.meerkat_count()

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

socket =
socket
|> assign(offset: 0, limit: 25, count: count)
|> load_meerkats()

{:ok, socket, temporary_assigns: [meerkats: []]}
end

defp load_meerkats(socket) do
%{offset: offset, limit: limit} = socket.assigns
meerkats = Meerkats.list_meerkats_with_pagination(offset, limit)
assign(socket, :meerkats, meerkats)

end

For our new LiveView, the mount/3 callback is rather simple: it first fetches the
count of all meerkat data from the database, assigns default values for the
offset and limit parameters, and fetches the first page of meerkat data using
the load_meerkats/1 function. However, one interesting detail is the temporary_assigns:
[meerkats: []] option, so let’s have a closer look at it.

Optimizing Memory Consumption with Temporary Assigns
Let’s imagine that a user opens our website and scrolls all the way to the
bottom of the page. We would fetch and store all meerkat data in-memory
until the user’s session ends. Now, imagine that thousands of users access
and scroll to the bottom of our website, all at the same time. Elixir is not a
memory-heavy language, but even that won’t save our server from running
out of memory and crashing.

Additionally, we store all that meerkat data in-memory although we don’t
really need to. Once a data entry is rendered, we could just forget about it.
Even if we needed a single data entry to handle subsequent user actions like,
for example, updating the entry, we could always fetch it from the database,
update it, and re-render its row in the table. So, storing all meerkat data in
the LiveView’s process would be wasteful.

Luckily, LiveView has our back. With the temporary_assigns option, we can
instruct LiveView to discard any meerkat data and reset the @meerkats assign
back to an empty list, once it has rendered the initial meerkat data. This way,
we only store the subset of the meerkat data in-memory until the LiveView
has rendered it and free up its memory allocation right after.

Now that we assign the meerkat data only temporarily, we can support signif-
icantly more users with the same amount of memory. If you still expect per-
formance issues, because you initially load too much data or you load data
too often when the user starts scrolling, you could tweak the limit parameter
until you find a sweet spot.

• Click HERE to purchase this book now. discuss

Creating the LiveView • 7

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

If you set limit too low, you’ll have to load data more often and its response
time will matter more because the user might hit the bottom of your website
before you render new content. If you set the limit too high, you’ll have peaks
in your memory consumption and might hit your memory threshold more
often because you load larger chunks of data per user. You can find the sweet
spot by load-testing your application using frameworks like wrt, k6, or Jmeter.

Now that we’ve defined the render/1 and mount/3 function of our LiveView, let’s
dive into how to load more meerkat data when the user starts scrolling.

As mentioned above, we’ll use a LiveView client hook to notify the LiveView
when it should load and render more meerkat data. The notification will be
a "load-more" event that the client hook sends through the websocket connec-
tion to the LiveView. Let’s create a handler for this event by adding the follow-
ing function to our LiveView:

def handle_event("load-more", _params, socket) do
%{offset: offset, limit: limit, count: count} = socket.assigns

socket =
if offset < count do
socket
|> assign(offset: offset + limit)
|> load_meerkats()

else
socket

end

{:noreply, socket}
end

Let’s dissect this function. First, we fetch the offset, limit, and count assigns from
the socket. Then we add a small but important detail to our event handler:
the offset < count check. This check allows us to stop fetching new data once
we’ve exhausted all meerkat data in our database.

As you can see in the assign(offset: offset + limit) call, we increase our offset by
our limit every time when we fetch new meerkat data. This means that at a
certain point, our offset will be larger than the count of all meerkat data.
When this happens, it would be pointless to keep on querying the database
since no new data will be returned. That’s why we add the offset < count check
here. Once we’ve exhausted our meerkat data, our event handler will become
a no-op and we don’t query our database unnecessarily.

That’s all the code needed on the LiveView side. Again, we’ve achieved so
much with so little Elixir code! Now, to make our LiveView accessible, make
sure to add it to lib/meow_web/router.ex, like this:

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

scope "/", MeowWeb do
pipe_through(:browser)

Add the next line
live("/infinity", InfinityLive)
live("/", MeerkatLive)

end

Start the server with mix phx.server and navigate your browser to http://localhost:4000/
infinity. You should see a table with 25 rows of meerkat data like this:

Try scrolling down the table. Unfortunately, no new meerkat data appears.
This is because we haven’t yet added the LiveView client hook that instructs
the LiveView to load more data whenever the user gets close to the bottom of
the table. Let’s fix this.

• Click HERE to purchase this book now. discuss

Creating the LiveView • 9

http://localhost:4000/infinity
http://localhost:4000/infinity
http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

