
Extracted from:

Building Table Views with
Phoenix LiveView

Advanced Table UIs for Accessible Data

This PDF file contains pages extracted from Building Table Views with Phoenix
LiveView, published by the Pragmatic Bookshelf. For more information or to
purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Building Table Views with
Phoenix LiveView

Advanced Table UIs for Accessible Data

Peter Ullrich

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Michael Swaine
Copy Editor: L. Sakhi MacMillan
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-973-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Paginating in the Database
As usual, we start with adding the new functionality to our Meerkats context.
Open up lib/meow/meerkats.ex and add the following code:

def list_meerkats_with_total_count(opts) do
query = from(m in Meerkat) |> filter(opts)

total_count = Repo.aggregate(query, :count)

result =
query
|> sort(opts)
|> paginate(opts)
|> Repo.all()

%{meerkats: result, total_count: total_count}
end

defp paginate(query, %{page: page, page_size: page_size})
when is_integer(page) and is_integer(page_size) do

offset = max(page - 1, 0) * page_size

query
|> limit(^page_size)
|> offset(^offset)

end

defp paginate(query, _opts), do: query

As you can see, we create a new list_meerkats_with_total_count/1 function instead
of extending the existing list_meerkats/1 function. We could also rewrite the
existing list_meerkats/1 function; however, since we change the return type of
the function, we’ll create a new function instead. We return the total count of
all entries affected by the query since we need this information for our pagi-
nation to work. Let’s take a step back and understand why this is necessary.

In the UI, we want to show how many pages our data has so that the user
can click through them. To do so, we need to calculate the total number of
pages so that we can show one button per page. We can calculate the number
of pages if we know the total count of the entries and the current page size.
The total number of pages is the total count divided by the page size, rounded
up. So, when we have 90 entries and a page size of 20, it’s 4.5 rounded up,
so 5 pages in total. Later on, we’ll see how we can adjust the page size in the
UI, but we need to calculate the total count in our Meerkats context whenever
we fetch the meerkat data.

That’s what our new list_meerkats_with_total_count/1 function is for. It sorts, filters,
and fetches our meerkat data just as before, but it also returns the total count
of all entries that match our query. Additionally, it only returns the number

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

of entries that we specify with the page size. So, instead of returning all
meerkat data, it only returns, for example, 20 rows, which is exactly what we
want to achieve with our pagination.

A Small Deep Dive into How Pagination Works
We implement the pagination by adding the limit/2 and offset/2 statements to
our query. The limit/2 call instructs the database to return only the number
of entries we specify. The offset/2 statement instructs the database from where
it should count the number of entries to return. As an example, if we set the
offset to 10 and the limit to 20, the database will return 20 entries counting
from the eleventh row, effectively ignoring the first 10 entries.

This is how we achieve the pagination. We calculate the offset by multiplying
the current page number by the page size. In the UI, we present the page
numbers as starting from 1, but in our database, the first page is page 0.
That’s why we subtract 1 from the page number before calculating the offset.
Let’s look at an example:

Let’s say we want to fetch the data for the first page with a page size of 10.
We first subtract 1 from the page number, receiving a new page number of
0. Then we multiply the 0 with our page size of 10, and we get an offset of 0.
This means that the database will return 10 entries beginning with the very
first row, which is exactly what we want.

Now, let’s say we want the data for the second page. We subtract 1 from the
page number of 2, resulting in a new page number of 1. We multiply it with
our page size of 10 and get an offset of 10. This means that the database will
skip the first 10 entries and return entries from the eleventh row onward. So,
for our second page, we return the second chunk of data, which is exactly
what we want as well.

As a safety precaution, we use the max/2 function to ensure that our page
number is always equal to or greater than 0. In case we make a mistake
somewhere and set the page number to 0 or even -1, this will fix the mistake
by replacing it with 0.

A Short Comparison of Offset vs. Cursor Pagination
The pagination approach just described is called offset pagination. It’s a
popular approach to pagination because it’s relatively simple and easy to
understand. It lets the user jump to any page in the data. However, for very
large datasets (we’re talking multiple millions of rows here) and for real-time
data presentation, offset pagination is unsuitable. The reason is that the

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

database needs to count many rows to fetch, for example, the ten-millionth
row.

The time complexity of offset pagination is O(offset + limit), which means that
it has linear complexity. So, if you have a large dataset and you need to fetch
the last page of the data frequently, offset pagination might not be efficient
enough for your use-case since it will take potentially very long until your
query returns the data.

Given this drawback, offset pagination is unsuitable for real-time data presen-
tation where new data is continuously appended to the table and the most
recent data is fetched often. Your database needs to count and ignore many
rows every time you fetch the latest data and the number of counted rows
increases as new data is added.

Another problem with offset pagination is that you might return repeated
rows to the user if you add data to a previous page. As an example, imagine
that we sort the meerkat data by the meerkat’s name and we chunk the data
into pages of ten rows each. Furthermore, imagine that the first page has ten
rows of names beginning with A and the second page has ten rows with names
beginning with B. So, if the user request the first page, they will see ten names
beginning with A.

Now, imagine we add another meerkat whose name begins with an A while
the user views the first page in their browser. Now, if the user moves to the
second page, suddenly they see a page containing one name beginning with
A and nine names beginning with B! Worse even, they might have seen the
name beginning with A on the previous page already! This happens because
the second page returns the tenth to the twentieth entries, regardless of which
data you presented previously. Since we now have eleven names with A and
ten with B, it returns the eleventh name with A and nine names with B. Hence,
the user see a repeated row with A, which might cause an inferior user
experience.

So, if you have a very large dataset, need to fetch rows at the end of the table
often, and add data anywhere in the dataset frequently, offset pagination
might not be for you. In such cases, you might want to look into cursor pagi-
nation instead.

In short, cursor pagination uses previous and next pointers to indicate the
upper and lower bounds of the current page. As an example, imagine you are
on the third page of the meerkat data and use the id field to paginate the data.
In this case, your previous, or lower bound, pointer would be 20 and the next,

• Click HERE to purchase this book now. discuss

Paginating in the Database • 7

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

or upper bound, pointer would be 29 because we are 0-based here. So, how
can you use these pointers to request the previous or the next page?

Fetching the next page is relatively simple. The query would look something
like this:

from(m in Meerkat,
where: m.id > ^29,
order_by: [asc: :id],
limit: 10

)

So, using the next pointer, we can simply fetch the next page by filtering out
any meerkat data with an id lower or equal to the next pointer, which is 29
in our case. This way, we fetch the thirtieth entry up to and including the
thirty-ninth entry, which is equal to the fourth page of our data. So far, so
good. However, fetching the previous page is slightly more complicated. Let’s
have a look at how a query could look:

from(m in Meerkat,
where: m.id < ^20,
order_by: [desc: :id],
limit: 10

)
|> Repo.all()
|> Enum.sort_by(& &1.id, :asc)

First, we filter out any data with an id equal to or higher than our previous
pointer, which is 20 in our case. We receive a dataset of twenty entries with
IDs from 0 to 19. So far so good. However, we want to fetch the tenth until
the nineteenth entry, which is why we sort the entries descending by their
ID. This results in a dataset where the entry with the ID 19 comes first, fol-
lowed by 18, 17, and so on. From that dataset, we then take ten entries as
indicated by the limit: 10 instruction. This returns the entries with an ID from
19 down to 10, which is the data we expect in the second page of our dataset.
However, the data is sorted descending by ID, which is why we inverse the
order using Enum.sort_by/3 before we return the data from the function.

Phew! As you can see, implementing a cursor-based pagination is definitely
more complex than the offset-based alternative. But the big advantage of
cursor-based pagination is that it uses the where instruction instead of the
offset instruction. The advantage of where over offset is that Postgres efficiently
ignores any rows that don’t match the where statement, whereas it counts and
skips the rows before the given offset. If the offset is high, Postgres counts every
single row until the offset, which can result in a full-table scan in the worst

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

case. With where, it first filters out any unsuitable rows before starting to
count. This results in a much more efficient query.

However, the efficiency gains of cursor pagination largely depend on properly
configured indices for the variables that you want to use for pagination. Our
primary key id already has an index, but if you wanted to paginate using the
name variable, you would have to create the proper index yourself. Otherwise,
Postgres still needs to check every row whether it matches the where statement
or not, and your cursor pagination won’t be better than a simple offset pagi-
nation.

Cursor pagination solves the problem with showing repeated entries, as well,
since it doesn’t rely on offsets but uses pointers to its upper and lower bound
entries instead. In our previous example, the upper bound of the first page
would be the last name with A. So, when the user requests the second page,
our query would only show names beginning with B since B > A. Even if we
added another meerkat with a name beginning with A in the meantime, the
second page would only show entries after the last name with A, so all names
with B.

The big downside of cursor pagination, aside from its implementation com-
plexity, is that users can’t jump to specific pages in the dataset. Instead, they
have to browse through every single page before the page that they want to
access. This is because we don’t have an offset anymore but only upper and
lower bounds pointers. If this is a common use-case for your users, consider
using offset pagination instead.

In summary, for small datasets whose last page is rarely accessed, the offset
pagination is a simple and suitable solution. If your dataset is very large and
you need to access its latest data frequently, a cursor-based pagination might
be more suitable. In this book, we’ll implement an offset-based pagination
since it’s easier to understand and implement. Also, once you have the offset
pagination in place, it’s a relatively small step to switch to curser-based pag-
ination.

Alright! Now that we discussed how the pagination works on the database
side, let’s see how we can expose the pagination functionality to the user. As
usual, we’ll create a LiveComponent to encapsulate the UI logic. Let’s see
what that looks like.

• Click HERE to purchase this book now. discuss

Paginating in the Database • 9

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

