
Extracted from:

Building Table Views with
Phoenix LiveView

Advanced Table UIs for Accessible Data

This PDF file contains pages extracted from Building Table Views with Phoenix
LiveView, published by the Pragmatic Bookshelf. For more information or to
purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Building Table Views with
Phoenix LiveView

Advanced Table UIs for Accessible Data

Peter Ullrich

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Michael Swaine
Copy Editor: L. Sakhi MacMillan
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-973-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Setting up LiveView
We’ll use a combination of a LiveComponent, a LiveView, and live navigation
to handle and apply changes to the sorting of our meerkat data. In brief, we
will use the LiveComponent to handle any user input to the sorting elements
of our table UI. The LiveComponent updates the sorting parameters and
notifies the LiveView about the changes. The LiveView navigates to itself with
the updated sorting parameters added to the URL of our website. Upon com-
pletion of the live navigation, the LiveView parses and validates the updated
parameters and passes them on to our context. The context returns the
sorted data and our LiveView re-renders the table UI with it. The diagram
below shows an overview of these steps.

1. Click

User

2. Change sorting

Sorting Button

4. Notify about new params

LiveComponent

6. Parse new params

9. Display
sorted data LiveView

5. Live navigate to self
with new params

7. Load data with
new params

8. Return
sorted data

Context

3. Update sorting params

The described approach has the advantages that we move the logic for
updating the sorting parameters out of our LiveView and into a reusable
LiveComponent. It also allows us to update the URL whenever the user
changes their view onto the data. Keeping the URL in sync with our sorting
parameters enables the user to share their view by simply copy-pasting the
URL. It also prevents the loss of the users’ view when they accidentally refresh
the website. We can also use it to load specific views, like the latest meerkat
data, to the user whenever they access the website.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

The flow described above uses the sorting parameters as an example, but
we’ll also use it for filtering and paginating the data in the upcoming chapters.

Now that we have understood the flow of updating and applying our sorting
parameters, let’s start implementing them.

Sorting with LiveComponent
As mentioned above, we want our LiveComponent to handle the user interac-
tions, update the sorting parameters, and notify the LiveView about the
changes. The SortingComponent that follows does just that. Open
lib/meow_web/live/sorting_component.ex, and have a look at the module shown here.
We’ll go through it step by step afterward.

defmodule MeowWeb.MeerkatLive.SortingComponent do
use MeowWeb, :live_component

def render(assigns) do
~H"""
<div phx-click="sort" phx-target={@myself} >
<%= @key %> <%= chevron(@sorting, @key) %>

</div>
"""

end

def handle_event("sort", _params, socket) do
%{sorting: %{sort_dir: sort_dir}, key: key} = socket.assigns

sort_dir = if sort_dir == :asc, do: :desc, else: :asc
opts = %{sort_by: key, sort_dir: sort_dir}

send(self(), {:update, opts})
{:noreply, assign(socket, :sorting, opts}

end

def chevron(%{sort_by: sort_by, sort_dir: sort_dir}, key)
when sort_by == key do

if sort_dir == :asc, do: "⇧", else: "⇩"
end

def chevron(_opts, _key), do: ""
end

We want to make the SortingComponent reusable. That’s why we let it only render
a single div element that shows the key of the field it sorts by and a chevron
that indicates its current sorting direction. We can add this div wherever we
want now—for example, as a header in our table UI.

Now, let’s go through its functionality. Have a look at the handle_event/3 callback.
You can see that if a user clicks the SortingComponent, we fetch the current sorting
parameters and update the sorting direction from ascending to descending

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

or the other way around. We then notify the LiveView about the updated
parameters by sending a message to self(). Eventually, we prevent any lag in
the UI by assigning the updated sorting parameters back to the socket of our
LiveComponent. This causes a re-render of our div element with the new
sorting direction. This way, the user will see the updated sorting direction
immediately, even when the LiveView has a delay in re-rendering the entire
table UI.

Adding the LiveComponent to the HEEx Template
Now that we’ve built the functionality of the SortingComponent, let’s add the
component to our table UI. Open lib/meow_web/live/meerkat_live.html.heex, and add
the SortingComponent as a table header. It should look like the code that follows.

<table>
<thead>

<tr>
<th>

<.live_component
module={MeowWeb.MeerkatLive.SortingComponent}
id={"sorting-id"}
key={:id}
sorting={@sorting} />

</th>
<th>

<.live_component
module={MeowWeb.MeerkatLive.SortingComponent}
id={"sorting-name"}
key={:name}
sorting={@sorting} />

</th>
</tr>

</thead>
<!-- Table body -->

</table>

As you can see, we added two table headers for the id and name fields of our
meerkat data. Since we use Phoenix 1.6 with Phoenix LiveView 0.17.5, we
can use the .live_component-function in our .heex file. If you use an older version,
simply replace the .live-component element with the following:

<%= live_component
MeowWeb.MeerkatLive.SortingComponent,
id: "sorting-name",
key: :name,
sorting: @sorting %>

• Click HERE to purchase this book now. discuss

Sorting with LiveComponent • 7

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

You might wonder about the @sorting assign we pass to our SortingComponent. It
contains the current sorting key and sorting direction in a map like this:
%{sort_by: :name, sort_dir: :desc}.

Now that we have a reusable SortingComponent that handles the user interactions,
updates the sorting parameters accordingly, and notifies the LiveView about
the changes, let’s have a look at how the LiveView handles these changes.

Updating the URL with the New Sorting Parameters
Whenever the user changes the sorting of the table, the SortingComponent sends
an {:update, new_sorting_params} message to the LiveView. However, our LiveView
doesn’t know how to handle that message yet. Open up the MeerkatLive module
in lib/meow_web/live/meerkat_live.ex and write a handle_info/2 callback that handles
the message. It should look like this:

def handle_info({:update, opts}, socket) do
path = Routes.live_path(socket, __MODULE__, opts)
{:noreply, push_patch(socket, to: path, replace: true)}

end

Our handle_info/2 callback doesn’t do much. It generates a path with the new
sorting parameters and uses push_patch/2 to live navigate to that path. This will
trigger our handle_params/3 callback, with the new parameters. Let’s see how
we can parse these parameters and apply them when fetching the meerkat
data.

Parsing and Assigning the Sorting Parameters
Our LiveView receives the sorting parameters in the handle_params/3 callback
when the website is mounted or when the user changes the parameters
through our SortingComponent.

As with all user input, we want to make sure that the received parameters
are indeed valid. We don’t want to build the validation ourselves though.
Luckily Ecto.Changeset offers the functionality of parsing and validating the
parameters for us. We’ll use this functionality inside a schemaless changeset called
SortingForm. Before we can create this form though, we have to take a small
detour into the differences between a schema changeset and a schemaless
changeset.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

Using Ecto.Enum Inside a Schemaless Changeset
If you want to work with a database in your Elixir application, you’ll likely
use an Ecto.Schema for defining the fields and their types in your database
schemas. Usually, a schema definition looks like this:

schema "my_models" do
field :name, :string
field :age, :integer
field :status, Ecto.Enum, values: [:active, :inactive]

end

The preceding schema defines the fields and their type for a fictitious MyModel
struct. Whenever you try to create such a struct, Ecto will check that your
input can be converted into the specified type of the field. For example, the
input %{"age"=> "21"} is valid since "21" can be converted to an integer. However,
the input %{"age" => "foo"} is invalid, since "foo" cannot be converted to an
integer.

We want to use this type notation in our SortingForm as well. In particular, we
want to define the valid values for our sort_by and sort_dir parameters as an
Ecto.Enum. This way, we can check each input against a list of valid values for
each parameter. However, our SortingForm doesn’t correspond to a database
schema. That is, we don’t store its values in our database, but only use them
in-memory. Therefore, we have to make it a schemaless changeset instead.

Schemaless changesets are Ecto.Changesets that don’t use an Ecto.Schema to define
the fields and the types of the data they validate. They validate the data against
fields defined in regular Elixir structs or simple key-value maps. Whereas the
purpose of regular changesets is usually to validate data before it’s written
to the database, schemaless changesets mostly validate user input coming
from forms or URL parameters. Any data that doesn’t correspond to a database
model hence doesn’t have an Ecto.Schema definition.

Unfortunately, the field :status, Ecto.Enum, values: [:active, :inactive] notation for Ecto.Enum
typed fields cannot be used in schemaless changesets. Instead, we have to
fall back to a general Ecto.ParameterizedType, which allows us to define any type
of field also in a schemaless changeset. Its notation might look a bit wild, but
the end result is the same. So, we wouldn’t define an Ecto.Enum field like this:

field :sort_by, Ecto.Enum, values: [:id, :name]

Instead, we have to write this:

sort_by: {:parameterized, Ecto.Enum, Ecto.Enum.init(values: [:id, :name])}

• Click HERE to purchase this book now. discuss

Parsing and Assigning the Sorting Parameters • 9

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

This notation is a bit too complex and tedious to type out for every parameter
we’ll define. Let’s create an EctoHelper module instead, which encapsulates this
notation in a small helper function called enum/1. Open up the
lib/meow/ecto_helper.ex file and type in the following:

defmodule Meow.EctoHelper do
def enum(values) do

{:parameterized, Ecto.Enum, Ecto.Enum.init(values: values)}
end

end

Now, we can use the Meow.EctoHelper.enum/1 function to define Ecto.Enum fields
also in a schemaless changeset. Let’s use it to define the valid values for the
sort_by and sort_dir parameters in our SortingForm.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/puphoe
http://forums.pragprog.com/forums/puphoe

