
Extracted from:

Seven Databases in Seven Weeks,
Second Edition

A Guide to Modern Databases and the NoSQL Movement

This PDF file contains pages extracted from Seven Databases in Seven Weeks,
Second Edition, published by the Pragmatic Bookshelf. For more information or

to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Seven Databases in Seven Weeks,
Second Edition

A Guide to Modern Databases and the NoSQL Movement

Luc Perkins
with Eric Redmond

and Jim R. Wilson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Series Editor: Bruce A. Tate
Copy Editor: Nancy Rapoport
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-253-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Day 2: Working with Big Data
With Day 1’s table creation and manipulation under our belts, it’s time to
start adding some serious data to our wiki table. Today, you’ll script against
the HBase APIs, ultimately streaming Wikipedia content right into our wiki!
Along the way, you’ll pick up some performance tricks for making faster import
jobs. Finally, you’ll poke around in HBase’s internals to see how it partitions
data into regions, achieving a series of both performance and disaster recovery
goals.

Importing Data, Invoking Scripts
One common problem people face when trying a new database system is how
to migrate data into it. Handcrafting Put operations with static strings, as you
did in Day 1, is all well and good, but you can do better.

Fortunately, pasting commands into the shell is not the only way to execute
them. When you start the HBase shell from the command line, you can
specify the name of a JRuby script to run. HBase will execute that script as
though it were entered directly into the shell. The syntax looks like this:

$ ${HBASE_HOME}/bin/hbase shell <your_script> [<optional_arguments> ...]

Because we’re interested specifically in “Big Data,” let’s create a script for
importing Wikipedia articles into our wiki table. The WikiMedia Foundation,
which oversees Wikipedia, Wictionary, and other projects, periodically pub-
lishes data dumps we can use. These dumps are in the form of enormous
XML files. Here’s an example record from the English Wikipedia:

<page>
<title>Anarchism</title>
<id>12</id>
<revision>

<id>408067712</id>
<timestamp>2011-01-15T19:28:25Z</timestamp>
<contributor>
<username>RepublicanJacobite</username>
<id>5223685</id>

</contributor>
<comment>Undid revision 408057615 by [[Special:Contributions...</comment>
<text xml:space="preserve">{{Redirect|Anarchist|the fictional character|

...
[[bat-smg:Anarkėzmos]]

</text>
</revision>

</page>

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

Because we have such incredible foresight, the individual items in these XML
files contain all the information we’ve already accounted for in our schema:
title (row key), text, timestamp, and author. We ought to be able to write a
script to import revisions without too much trouble.

Streaming XML
First things first: We’ll need to parse the huge XML files in a streaming fashion,
so let’s start with that. The basic outline for parsing an XML file in JRuby,
record by record, looks like this:

hbase/basic_xml_parsing.rb
import 'javax.xml.stream.XMLStreamConstants'

factory = javax.xml.stream.XMLInputFactory.newInstance
reader = factory.createXMLStreamReader(java.lang.System.in)

while reader.has_next

type = reader.next

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/pwrdata/code/hbase/basic_xml_parsing.rb
http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

if type == XMLStreamConstants::START_ELEMENT
tag = reader.local_name
do something with tag

elsif type == XMLStreamConstants::CHARACTERS
text = reader.text
do something with text

elsif type == XMLStreamConstants::END_ELEMENT
same as START_ELEMENT

end

end

Breaking this down, there are a few parts worth mentioning. First, we produce
an XMLStreamReader and wire it up to java.lang.System.in, which means it will be
reading from standard input.

Next, we set up a while loop, which will continuously pull out tokens from the
XML stream until there are none left. Inside the while loop, we process the
current token. What happens then depends on whether the token is the start
of an XML tag, the end of a tag, or the text in between.

Streaming Wikipedia
Now we can combine this basic XML processing framework with our previous
exploration of the HTable and Put interfaces you explored previously. Here is
the resultant script. Most of it should look familiar, and we will discuss a few
novel parts.

hbase/import_from_wikipedia.rb
require 'time'

import 'org.apache.hadoop.hbase.client.HTable'
import 'org.apache.hadoop.hbase.client.Put'
import 'javax.xml.stream.XMLStreamConstants'

def jbytes(*args)
args.map { |arg| arg.to_s.to_java_bytes }

end

factory = javax.xml.stream.XMLInputFactory.newInstance
reader = factory.createXMLStreamReader(java.lang.System.in)

document = nil
buffer = nil
count = 0

table = HTable.new(@hbase.configuration, 'wiki')
table.setAutoFlush(false)

while reader.has_next
type = reader.next

• Click HERE to purchase this book now. discuss

Day 2: Working with Big Data • 7

http://media.pragprog.com/titles/pwrdata/code/hbase/import_from_wikipedia.rb
http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

if type == XMLStreamConstants::START_ELEMENT

case reader.local_name
when 'page' then document = {}
when /title|timestamp|username|comment|text/ then buffer = []
end

elsif type == XMLStreamConstants::CHARACTERS

buffer << reader.text unless buffer.nil?

elsif type == XMLStreamConstants::END_ELEMENT

case reader.local_name
when /title|timestamp|username|comment|text/
document[reader.local_name] = buffer.join

when 'revision'
key = document['title'].to_java_bytes
ts = (Time.parse document['timestamp']).to_i

p = Put.new(key, ts)
p.add(*jbytes("text", "", document['text']))
p.add(*jbytes("revision", "author", document['username']))
p.add(*jbytes("revision", "comment", document['comment']))
table.put(p)

count += 1
table.flushCommits() if count % 10 == 0
if count % 500 == 0

puts "#{count} records inserted (#{document['title']})"
end

end
end

end

table.flushCommits()
exit

A few things to note in the preceding snippet:

• Several new variables were introduced:

– document holds the current article and revision data.

– buffer holds character data for the current field within the document
(text, title, author, and so on).

– count keeps track of how many articles you’ve imported so far.

• Pay special attention to the use of table.setAutoFlush(false). In HBase, data is
automatically flushed to disk periodically. This is preferred in most
applications. By disabling autoflush in our script, any put operations you
execute will be buffered until you call table.flushCommits(). This allows you
to batch writes together and execute them when it’s convenient for you.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

• If the start tag is a <page>, then reset document to an empty hash. Otherwise,
if it’s another tag you care about, reset buffer for storing its text.

• We handle character data by appending it to the buffer.

• For most closing tags, you just stash the buffered contents into the document.
If the closing tag is a </revision>, however, you create a new Put instance,
fill it with the document’s fields, and submit it to the table. After that, you
use flushCommits() if you haven’t done so in a while and report progress to
stdout.

Compression and Bloom Filters
We’re almost ready to run the script; we just have one more bit of houseclean-
ing to do first. The text column family is going to contain big blobs of text
content. Reading those values will take much longer than values like Hello
world or Welcome to the wiki! from Day 1. HBase enables us to compress that data
to speed up reads:

hbase> alter 'wiki', {NAME=>'text', COMPRESSION=>'GZ', BLOOMFILTER=>'ROW'}
0 row(s) in 0.0510 seconds

HBase supports two compression algorithms: Gzip (GZ) and Lempel-Ziv-
Oberhumer (LZO). The HBase community highly recommends using LZO over
Gzip pretty much unilaterally, but here we’re using Gzip. Why is that?

The problem with LZO for our purposes here is the implementation’s license.
While open source, LZO is not compatible with Apache’s licensing philosophy,
so LZO can’t be bundled with HBase. Detailed instructions are available online
for installing and configuring LZO support. If you want high-performance
compression, use LZO in your own projects.

A Bloom filter is a really cool data structure that efficiently answers the
question “Have I ever seen this thing before?” and is used to prevent expensive
queries that are doomed to fail (that is, to return no results). Originally
developed by Burton Howard Bloom in 1970 for use in spell-checking appli-
cations, Bloom filters have become popular in data storage applications for
determining quickly whether a key exists.

HBase supports using Bloom filters to determine whether a particular column
exists for a given row key (BLOOMFILTER=>'ROWCOL') or just whether a given row
key exists at all (BLOOMFILTER=>'ROW'). The number of columns within a column
family and the number of rows are both potentially unbounded. Bloom filters
offer a fast way of determining whether data exists before incurring an
expensive disk read.

• Click HERE to purchase this book now. discuss

Day 2: Working with Big Data • 9

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

How Do Bloom Filters Work?

Without going too deep into implementation details, a Bloom filter manages a stati-
cally sized array of bits initially set to 0. Each time a new blob of data is presented
to the filter, some of the bits are flipped to 1. Determining which bits to flip depends
on generating a hash from the data and turning that hash into a set of bit positions.

Later, to test whether the filter has been presented with a particular blob in the past,
the filter figures out which bits would have to be 1 and checks them. If any are 0,
then the filter can unequivocally say “no.” If all of the bits are 1, then it reports “yes.”
Chances are it has been presented with that blob before, but false positives are
increasingly likely as more blobs are entered.

This is the trade-off of using a Bloom filter as opposed to a simple hash. A hash will
never produce a false positive, but the space needed to store that data is unbounded.
Bloom filters use a constant amount of space but will occasionally produce false
positives at a predictable rate based on saturation. False positives aren’t a huge deal,
though; they just mean that the filter says a value is likely to be there, but you will
eventually find out that it isn’t.

Engage!
Now that we’ve dissected the script a bit and added some powerful capabilities
to our table, we’re ready to kick off the script. Remember that these files are
enormous, so downloading and unzipping them is pretty much out of the
question. So, what are we going to do?

Fortunately, through the magic of *nix pipes, we can download, extract, and
feed the XML into the script all at once. The command looks like this:

$ curl https://url-for-the-data-dump.com | bzcat | \
${HBASE_HOME}/bin/hbase shell import_from_wikipedia.rb

Note that you should replace the preceding dummy URL with the URL of a
WikiMedia Foundation dump file of some kind.2 You should use [project]-latest-
pages-articles.xml.bz2 for either the English Wikipedia (~12.7 GB)3 or the English
Wiktionary (~566 MB).4 These files contain all of the most recent revisions of
pages in the Main namespace. That is, they omit user pages, discussion pages,
and so on.

Plug in the URL and run it! You should start seeing output like this shortly:

2. https://dumps.wikimedia.org/enwiki/latest
3. https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
4. https://dumps.wikimedia.org/enwiktionary/latest/enwiktionary-latest-pages-articles.xml.bz2

• 10

• Click HERE to purchase this book now. discuss

https://dumps.wikimedia.org/enwiki/latest
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiktionary/latest/enwiktionary-latest-pages-articles.xml.bz2
http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

500 records inserted (Ashmore and Cartier Islands)
1000 records inserted (Annealing)
1500 records inserted (Ajanta Caves)

The script will happily chug along as long as you let it or until it encounters
an error, but you’ll probably want to shut it off after a while. When you’re
ready to kill the script, press Ctrl+C . For now, though, let’s leave it running
so we can take a peek under the hood and learn about how HBase achieves
its horizontal scalability.

• Click HERE to purchase this book now. discuss

Day 2: Working with Big Data • 11

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

