
Extracted from:

Seven Databases in Seven Weeks,
Second Edition

A Guide to Modern Databases and the NoSQL Movement

This PDF file contains pages extracted from Seven Databases in Seven Weeks,
Second Edition, published by the Pragmatic Bookshelf. For more information or

to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Seven Databases in Seven Weeks,
Second Edition

A Guide to Modern Databases and the NoSQL Movement

Luc Perkins
with Eric Redmond

and Jim R. Wilson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Series Editor: Bruce A. Tate
Copy Editor: Nancy Rapoport
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-253-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Big Data
Up until now, we’ve dealt with very small datasets, so now it’s time to see
what Neo4j can do with some big data. We’ll explore a dataset covering
information about over 12,000 movies and over 40,000 actors, 6,000 directors,
and others involved in those movies.

This dataset has been made available4 by the good folks at Neo4j, who have
conveniently made the data directly digestible by Neo4j; thus, we don’t need
to convert it from CSV, XML, or some other format.

First, let’s download the dataset as a Zip file, unzip it, and add it to the /data
folder in our Neo4j directory:

$ cd /path/to/neo4j
$ curl -O <copy URL from footnote 4>
$ unzip cineasts_12k_movies_50k_actors_2.1.6.zip
$ mv cineasts_12k_movies_50k_actors.db data/movies.db

That dataset was generated to work with version 2.1.6 of Neo4j, but we’re
using a much later version (3.0.7). We’ll need to make one small configuration
change to enable it to work with our version. In the /conf folder there’s a file
called neo4j.conf, and inside that file there’s a line that looks like this:

#dbms.allow_format_migrations=true

Delete the # at the beginning of the line. That will instruct Neo4j to automat-
ically migrate the format to fit our version. Now, fire up the Neo4j shell,
specifying our movies.db database and the config file we just modified:

$ bin/neo4j-shell -path data/movies.db -config conf/neo4j.conf

This is our first encounter with the Neo4j shell. It’s somewhat like the web
console we used earlier in this chapter, but with the crucial difference that
it returns raw values rather than pretty charts. It is a more direct and no-
frills way to interact with Neo4j and better to use once you have gotten the
hang of the database. When the shell fires up, you should see a shell prompt
like this:

neo4j-sh (?)$

You can enter help to get a list of available shell commands. At any time in
the shell, you can either enter one of those commands or a Cypher query.

Our shell session is already pointing to our movie database, so let’s see what
nodes are there:

4. http://example-data.neo4j.org/files/cineasts_12k_movies_50k_actors_2.1.6.zip

• Click HERE to purchase this book now. discuss

http://example-data.neo4j.org/files/cineasts_12k_movies_50k_actors_2.1.6.zip
http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

neo4j> MATCH (n) RETURN n;

Whoa! That’s a lot of nodes, 63,042 to be exact (you can obtain that result
by returning count(n) instead of just n). We warned you that this is a Big Data
section! Let’s make some more specific queries now. First, let’s see what types
of relationships exist:

neo4j> MATCH ()-[r]-() RETURN DISTINCT type(r);
+------------+
| type(r) |
+------------+
| "ACTS_IN" |
| "DIRECTED" |
| "RATED" |
| "FRIEND" |
+------------+
4 rows

Here, the ()-[r]-() expresses that we don’t care what the nodes look like; we just
want to know about the relationship between them, which we’re storing in
the variable r. You can also see that in Cypher you use type(r) instead of, say,
r.type to get the relationship type (because types are a special attribute of
relationships). As you can see, there are four types of relationships present
in the database. Now, let’s look at all the nodes and see both which labels
are applied to them and how many nodes are characterized by that label:

$ MATCH (n) RETURN DISTINCT labels(n), count(n);
+--+
| labels(n) | count(*) |
+--+
["Person","Actor","Director"]	846
["Person","User"]	45
["Person","Actor"]	44097
["Person","Director"]	5191
[]	1
["Movie"]	12862
+--+
6 rows

As you can see, all nodes that aren’t movies have the Person label (or no label);
of those, all Persons are either Actors, Directors, Users (the folks who put the dataset
together), or a Director and Actor (we’re looking at you, Clint Eastwood). Let’s
perform some other queries to explore the database.

Let’s see everyone who’s both an actor and a director, and then get the count
of people who share that distinction:

> MATCH (p:Actor:Director) RETURN p.name;
> MATCH (p:Actor:Director) RETURN count(p.name);

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

Now let’s see who directed the immortal Top Gun:

> MATCH (d:Director)-[:DIRECTED]-(m:Movie {title: "Top Gun"}) RETURN d.name;

Let’s see how many movies the legendary Meryl Streep has acted in:

> MATCH (a:Actor {name: "Meryl Streep"})-[:ACTS_IN]-(m:Movie)
RETURN count(m);

Finally, let’s get a list of actors who have appeared in over fifty movies:

> MATCH (a: Actor)-[:ACTS_IN]->(m:Movie)
WITH a, count(m) AS movie_count
WHERE movie_count > 50
RETURN a.name; # only 6 actors!

Now that we’ve played with this specific dataset a little bit, let’s solve a more
challenging algorithmic problem that uses Neo4j more like the high-powered
graph database that it really is. What’s the most common algorithmic problem
in showbiz? You may have guessed already...

Six Degrees of...
...you guessed it: Kevin Bacon. We’re going to solve the six degrees of Kevin
Bacon problem here so that you can memorize some of the key results and
be a big hit at your next dinner party. More specifically, we want to know how
many actors are within six degrees of Mr. Bacon, what percentage of the
actors in the database have that distinction, what the shortest "path" from
an actor to Kevin Bacon happens to be, and so on. You’ll find some similar
Neo4j exercises online but this one utilizes a very large dataset that can
generate more true-to-life results.

What you may find in this exercise is that Cypher has a lot already baked
into the language. To get the results we’re after, we won’t need to write a
sophisticated algorithm on the client side or traverse a node tree or anything
like that. We just need to learn a little bit more about how Cypher works.

In the last section, you saw that you can make very specific queries about
nodes and relationships. Let’s find out which Movies nodes Kevin Bacon has
the relationship ACTED_IN with (let’s see the number of movies first and then
list the titles):

> MATCH (Actor {name:"Kevin Bacon"})-[:ACTS_IN]-(m:Movie) RETURN count(m);
> MATCH (Actor {name:"Kevin Bacon"})-[:ACTS_IN]-(m:Movie) RETURN m.title;

Only thirty movies in our database! Amazing that such a not-exceedingly
prolific actor is so well connected in Hollywood. But remember, the magic of
Kevin Bacon is not the number of movies he’s been in; it’s the variety of actors

• Click HERE to purchase this book now. discuss

• 7

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

he’s shared the screen with. Let’s find out how many actors share this distinc-
tion (this query will make more sense later):

> MATCH (Actor {name: "Kevin Bacon"})-[:ACTS_IN]->(Movie)
<-[:ACTS_IN]-(other:Actor)

RETURN count(DISTINCT other);
+----------+
| count(a) |
+----------+
| 304 |
+----------+

Still not a huge number, but remember this is only one degree of Kevin Bacon.
Here, we can see that you can actually reverse the direction of the relationship
arrow in a query, which is quite useful in more complex queries like this.

Now let’s find out how many actors are two degrees from Kevin Bacon. From
the previous expression, it’s not entirely clear how to write that query because
we’d need to make that relationship chain much more complex, resulting in
a mess of arrows and brackets. Fortunately, Cypher provides us with some
syntactical sugar for this using star notation (*).

> MATCH (Actor {name: "Kevin Bacon"})-[:ACTS_IN*1..2]-(other:Actor)
RETURN count(DISTINCT other);

+----------+
| count(a) |
+----------+
| 304 |
+----------+

Two things to be aware of. First, there’s no Movie label anywhere here. That’s
because Actors can only have ACTS_IN relationships with Movies, so we can
safely leave that part out. Second, note that that’s the same result as before
(a count of 313), so something is not quite right. It turns out that this Cypher
star notation is a bit tricky because each "jump" between nodes counts. So
you’ll need to think of this query in terms of a four-jump chain (actor-movie-
actor-movie-actor) and rewrite the query:

> MATCH (Actor {name: "Kevin Bacon"})-[:ACTS_IN*1..4]-(other:Actor)
RETURN count(DISTINCT other);

+-----------------------+
| count(DISTINCT other) |
+-----------------------+
| 9096 |
+-----------------------+

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

Be Wary of Repetition

You may have noticed the DISTINCT expression in many of these Cypher queries. This
is extremely important in Cypher queries because it enables you to exclude redundant
results. Running the previous query without using DISTINCT results in a count of 313,
which suggests that there are a few actors who are within two degrees of Kevin Bacon
more than once. Quite the distinction (no pun intended)!

For some datasets, these discrepancies may be much larger, skewing the results
beyond recognition and usefulness. When dealing with graphs, this is something that
can really bite you, so if your results ever seem off, checking for redundancy is a good
place to start.

If you use 5 instead of 4 in that query, you’ll get the same result and for the
same reason. You need to make an actor-to-movie jump to include more
actors in the result set.

As you can see, the quotient between 2 degrees and 1 degree is about 79, so
the web of relationships fans out very quickly. Calculating 3 degrees yields
31,323. Counting 4 degrees takes minutes and might even time out on your
machine, so we don’t recommend running that query unless you need a (long)
hot chocolate break.

Thus far, we’ve only really been counting nodes that share some trait, though
our ability to describe those traits has been enhanced. We’re still not equipped
to answer any of our initial questions, such as how many degrees lie between
Kevin Bacon and other actors, what percentage of actors lie within N degrees,
and so on.

To get traction into those questions, we need to begin querying for path data,
as we did in the REST exercises. Once again, Cypher comes through in the
clutch for us with its shortestPath function, which enables you to easily calculate
the distance between two nodes. You can specify the relationship type you’re
interested in specifically or just use * if the relationship type doesn’t matter.

We can use the shortestPath function to find the number of degrees separating
Kevin Bacon and another dashing actor, Sean Penn, using this query:

> MATCH (
bacon:Actor {name: "Kevin Bacon"}),
(penn:Actor {name: "Sean Penn"}

),
p=shortestPath((bacon)-[:ACTS_IN*]-(penn))
RETURN length(p);

+---------------+
| length(p) / 2 |

• Click HERE to purchase this book now. discuss

• 9

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

+---------------+
| 2 |
+---------------+

But wait a second. According to IMDB, Messieurs Bacon and Penn starred
together in Mystic River. So why does it take 2 degrees to connect these two
when it should be one? Well, it turns out that Mystic River isn’t in our
database.

> MATCH (m:Movie {name: "Mystic River"})
RETURN count(DISTINCT m);

+-------------------+
| count(DISTINCT m) |
+-------------------+
| 0 |
+-------------------+

Looks like our database is lacking some crucial bits of cinema. So maybe
don’t use these results to show off at your next dinner party just yet; you
might want to find a more complete database for that. But for now, you know
how to calculate shortest paths, so that’s a good start. Try finding the number
of degrees between some of your favorite actors.

Another thing we’re interested in beyond the shortest path between any two actors
is the percentage of actors that lie within N degrees. We can do that by using a
generic other node with the Actor label and counting the number of shortest paths
that are found within a number of degrees. We’ll start with 2 degrees and divide
the result by the total number of actors, making sure to specify that we don’t
include the original Kevin Bacon node in the shortest path calculation (or we’ll
get a nasty and long-winded error message).

> MATCH p=shortestPath(
(bacon:Actor {name: "Kevin Bacon"})-[:ACTS_IN*1..2]-(other:Actor)

)
WHERE bacon <> other
RETURN count(p);

+----------+
| count(p) |
+----------+
| 304 |
+----------+

Just as expected, the same result as before. What happened there is that Neo4j
traversed every relationship within 1 degree of Kevin Bacon and found the number
that had shortest paths. So in this case, p returns a list of many shortest paths
between Kevin Bacon and many actors rather than just a single shortest path to
one actor. Now let’s divide by the total number of actors (44,943) and add an
extra decimal place to make sure we get a float:

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

> MATCH p=shortestPath(
(bacon:Actor {name: "Kevin Bacon"})-[:ACTS_IN*1..2]-(other:Actor)

)
WHERE bacon <> other
RETURN count(p) / 44943.0;

+----------------------+
| count(p) / 44943.0 |
+----------------------+
| 0.006764123445252876 |
+----------------------+

That’s a pretty small percentage of actors. But now re-run that query using 4
instead of 2 (to symbolize 2 degrees rather than 1):

> MATCH p=shortestPath(
(bacon:Actor {name: "Kevin Bacon"})-[:ACTS_IN*1..4]-(other:Actor)

)
WHERE bacon <> other
RETURN count(p) / 44943.0;

+--------------------+
| count(p) / 44943.0 |
+--------------------+
| 0.2023674432058385 |
+--------------------+

Already up to 20 percent within just 1 extra degree. Running the same query
gets you almost 70 percent for 3 degrees, a little over 90 percent for 4 degrees,
93 percent for 5, and about 93.4 percent for a full 6 degrees. So how many
actors have no relationship with Kevin Bacon whatsoever in our database? We
can find that out by not specifying an N for degrees and just using any degree:

> MATCH p=shortestPath(
(bacon:Actor {name: "Kevin Bacon"})-[:ACTS_IN*]-(other:Actor)

)
WHERE bacon <> other
RETURN count(p) / 44943.0;

+--------------------+
| count(p) / 44943.0 |
+--------------------+
| 0.9354960728033287 |
+--------------------+

Just a little bit higher than the percentage of actors within 6 degrees, so if
you’re related to Kevin Bacon at all in our database, then you’re almost cer-
tainly within 6 degrees.

Day 2 Wrap-Up
On Day 2, we broadened our ability to interact with Neo4j by taking a look
at the REST interface. You saw how, using the Cypher plugin, you can execute

• Click HERE to purchase this book now. discuss

• 11

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

Cypher code on the server and have the REST interface return results. We
played around with a larger dataset and finally finished up with a handful of
algorithms for diving into that data.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pwrdata
http://forums.pragprog.com/forums/pwrdata

