
Extracted from:

Agile Web Development with Rails
Second Edition

This PDF file contains pages extracted from Agile Web Development with Rails, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is available only in
online versions of the books. The printed versions are black and white. Pagination might vary

between the online and printer versions; the content is otherwise identical.

Copyright © 2007The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

In this chapter, we’ll see

• using partial templates

• rendering into the page layout

• updating pages dynamically with AJAX and rjs

• highlighting changes with Script.aculo.us

• hiding and revealing DOM elements

• working when JavaScript is disabled

Chapter 9

Task D: Add a Dash of AJAX
Our customer wants us to add AJAX support to the store. But just what is

AJAX?

In the old days (up until a year or two ago), browsers were treated as really

dumb devices. When you wrote a browser-based application, you’d send stuff

down to the browser and then forget about that session. At some point, the

user would fill in some form fields or click a hyperlink, and your application

would get woken up by an incoming request. It would render a complete page
back to the user, and the whole tedious process would start afresh. That’s

exactly how our Depot application behaves so far.

But it turns out that browsers aren’t really that dumb (who knew?). They can

run code. Almost all browsers can run JavaScript (and the vast majority also
support Adobe’s Flash). And it turns out that the JavaScript in the browser

can interact behind the scenes with the application on the server, updating

the stuff the user sees as a result. Jesse James Garrett named this style of

interaction AJAX (which once stood for Asynchronous JavaScript and XML but

now just means Making Browsers Suck Less).

So, let’s AJAXify our shopping cart. Rather than having a separate shopping

cart page, let’s put the current cart display into the catalog’s sidebar. Then,

we’ll add the AJAX magic that updates the cart in the sidebar without redis-

playing the whole page.

Whenever you work with AJAX, it’s good to start with the non-AJAX version of

the application and then gradually introduce AJAX features. That’s what we’ll

do here. For starters, let’s move the cart from its own page and put it in the

sidebar.

ITERATION D1: MOVING THE CART 125

9.1 Iteration D1: Moving the Cart

Currently, our cart is rendered by the add_to_cart action and the corresponding

.rhtml template. What we’d like to do is to move that rendering into the layout

that displays the overall catalog. And that’s easy, using partial templates.1

Partial Templates

Programming languages let you define methods. A method is a chunk of code

with a name: invoke the method by name, and the corresponding chunk of
code gets run. And, of course, you can pass parameters to a method, which lets

you write one piece of code that can be used in many different circumstances.

You can think of Rails partial templates (partials for short) as a kind of method

for views. A partial is simply a chunk of a view in its own separate file. You can
invoke (render) a partial from another template or from a controller, and the

partial will render itself and return the results of that rendering. And, just as

with methods, you can pass parameters to a partial, so the same partial can

render different results.

We’ll use partials twice in this iteration. First, let’s look at the cart display

itself.

Download depot_i/app/views/store/add_to_cart.rhtml

<div class="cart-title">Your Cart</div>

<table>

<% for cart_item in @cart.items %>

<tr>

<td><%= cart_item.quantity %>×</td>

<td><%= h(cart_item.title) %></td>

<td class="item-price"><%= number_to_currency(cart_item.price) %></td>

</tr>

<% end %>

<tr class="total-line">

<td colspan="2">Total</td>

<td class="total-cell"><%= number_to_currency(@cart.total_price) %></td>

</tr>

</table>

<%= button_to "Empty cart", :action => :empty_cart %>

1. Another way would be to use components. A component is a way of packaging some work done
by a controller and the corresponding rendering. In our case, we could have a component called
display_cart, where the controller action fetches the cart information from the session and the view
renders the HTML for the cart. The layout would then insert this rendered HTML into the sidebar.
However, there are indications that components are falling out of favor in the Rails community, so
we won’t use one here. (For a discussion of why components are déclassé, see Section 22.9, The

Case against Components, on page 514.)

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_i/app/views/store/add_to_cart.rhtml
http://www.pragmaticprogrammer.com/titles/rails2

ITERATION D1: MOVING THE CART 126

It creates a list of table rows, one for each item in the cart. Whenever you

find yourself iterating like this, you might want to stop and ask yourself, is

this too much logic in a template? It turns out we can abstract away the loop

using partials (and, as we’ll see, this also sets the stage for some AJAX magic

later). To do this, we’ll make use of the fact that you can pass a collection to
the method that renders partial templates, and that method will automatically

invoke the partial once for each item in the collection. Let’s rewrite our cart

view to use this feature.

Download depot_j/app/views/store/add_to_cart.rhtml

<div class="cart-title">Your Cart</div>

<table>

<%= render(:partial => "cart_item", :collection => @cart.items) %>

<tr class="total-line">

<td colspan="2">Total</td>

<td class="total-cell"><%= number_to_currency(@cart.total_price) %></td>

</tr>

</table>

<%= button_to "Empty cart", :action => :empty_cart %>

That’s a lot simpler. The render method takes the name of the partial and the
collection object as parameters. The partial template itself is simply another

template file (by default in the same directory as the template that invokes it).

However, to keep the names of partials distinct from regular templates, Rails

automatically prepends an underscore to the partial name when looking for

the file. That means our partial will be stored in the file _cart_item.rhtml in the
app/views/store directory.

Download depot_j/app/views/store/_cart_item.rhtml

<tr>

<td><%= cart_item.quantity %>×</td>

<td><%= h(cart_item.title) %></td>

<td class="item-price"><%= number_to_currency(cart_item.price) %></td>

</tr>

There’s something subtle going on here. Inside the partial template, we refer

to the current cart item using the variable cart_item. That’s because the render

method in the main template arranges to set a variable with the same name
as the partial template to the current item each time around the loop. The

partial is called cart_item, so inside the partial we expect to have a variable

called cart_item.

So now we’ve tidied up the cart display, but that hasn’t moved it into the
sidebar. To do that, let’s revisit our layout. If we had a partial template that

could display the cart, we could simply embed a call to

render(:partial => "cart")

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_j/app/views/store/add_to_cart.rhtml
http://media.pragprog.com/titles/rails2/code/depot_j/app/views/store/_cart_item.rhtml
http://www.pragmaticprogrammer.com/titles/rails2

ITERATION D1: MOVING THE CART 127

within the sidebar. But how would the partial know where to find the cart

object? One way would be for it to make an assumption. In the layout, we have

access to the @cart instance variable that was set by the controller. It turns out

that this is also available inside partials called from the layout. However, this

is a bit like calling a method and passing it some value in a global variable.
It works, but it’s ugly coding, and it increases coupling (which in turn makes

your programs brittle and hard to maintain).

Remember using render with the collection option inside the add_to_cart tem-

plate? It set the variable cart_item inside the partial. It turns out we can do the
same when we invoke a partial directly. The :object parameter to render takes

an object that is assigned to a local variable with the same name as the partial.

So, in the layout we could call

<%= render(:partial => "cart", :object => @cart) %>

and in the _cart.rhtml template, we can refer to the cart via the variable cart.

Let’s do that wiring now. First, we’ll create the _cart.rhtml template. This is

basically our add_to_cart template but using cart instead of @cart. (Note that

it’s OK for a partial to invoke other partials.)

Download depot_j/app/views/store/_cart.rhtml

<div class="cart-title">Your Cart</div>

<table>

<%= render(:partial => "cart_item", :collection => cart.items) %>

<tr class="total-line">

<td colspan="2">Total</td>

<td class="total-cell"><%= number_to_currency(cart.total_price) %></td>

</tr>

</table>

<%= button_to "Empty cart", :action => :empty_cart %>

Now we’ll change the store layout to include this new partial in the sidebar.

Download depot_j/app/views/layouts/store.rhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Pragprog Books Online Store</title>

<%= stylesheet_link_tag "depot", :media => "all" %>

</head>

<body id="store">

<div id="banner">

<%= image_tag("logo.png") %>

<%= @page_title || "Pragmatic Bookshelf" %>

</div>

<div id="columns">

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_j/app/views/store/_cart.rhtml
http://media.pragprog.com/titles/rails2/code/depot_j/app/views/layouts/store.rhtml
http://www.pragmaticprogrammer.com/titles/rails2

ITERATION D1: MOVING THE CART 128

<div id="side">

<div id="cart">

<%= render(:partial => "cart", :object => @cart) %>

</div>

Home

Questions

News

Contact

</div>

<div id="main">

<% if flash[:notice] -%>

<div id="notice"><%= flash[:notice] %></div>

<% end -%>

<%= yield :layout %>

</div>

</div>

</body>

</html>

Now we have to make a small change to the store controller. We’re invoking

the layout while looking at the store’s index action, and that action doesn’t
currently set @cart. That’s easy enough to remedy.

Download depot_j/app/controllers/store_controller.rb

def index

@products = Product.find_products_for_sale

@cart = find_cart

end

If you display the catalog after adding something to your cart, you should see
something like Figure 9.1, on the next page.2 Let’s just wait for the Webby

Award nomination.

Changing the Flow

Now that we’re displaying the cart in the sidebar, we can change the way that
the Add to Cart button works. Rather than displaying a separate cart page,

all it has to do is refresh the main index page. The change is pretty simple: at

the end of the add_to_cart action, we simply redirect the browser back to the

index.

Download depot_k/app/controllers/store_controller.rb

def add_to_cart

begin

product = Product.find(params[:id])

rescue ActiveRecord::RecordNotFound

logger.error("Attempt to access invalid product #{params[:id]}")

redirect_to_index("Invalid product")

2. And if you’ve updated your CSS appropriately.... See the listing on page 680 for our CSS.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_j/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_k/app/controllers/store_controller.rb
http://www.pragmaticprogrammer.com/titles/rails2

ITERATION D1: MOVING THE CART 129

Figure 9.1: The Cart Is in the Sidebar

else

@cart = find_cart

@cart.add_product(product)

redirect_to_index

end

end

For this to work, we need to change the definition of redirect_to_index to make

the message parameter optional.

Download depot_k/app/controllers/store_controller.rb

def redirect_to_index(msg = nil)

flash[:notice] = msg if msg

redirect_to :action => :index

end

We should now get rid of the add_to_cart.rhtml template—it’s no longer needed.

(What’s more, leaving it lying around might confuse us later in this chapter.)

So, now we have a store with a cart in the sidebar. When you click to add an

item to the cart, the page is redisplayed with an updated cart. However, if our

catalog is large, that redisplay might take a while. It uses bandwidth, and it

uses server resources. Fortunately, we can use AJAX to make this better.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_k/app/controllers/store_controller.rb
http://www.pragmaticprogrammer.com/titles/rails2

ITERATION D2: AN AJAX-BASED CART 130

9.2 Iteration D2: An AJAX-Based Cart

AJAX lets us write code that runs in the browser that interacts with our server-

based application. In our case, we’d like to make the Add to Cart buttons

invoke the server add_to_cart action in the background. The server can then
send down just the HTML for the cart, and we can replace the cart in the

sidebar with the server’s updates.

Now, normally you’d do this by writing JavaScript that runs in the browser and

by writing server-side code that communicated with this JavaScript (possibly
using a technology such as JSON). The good news is that, with Rails, all this

is hidden from you. We can do everything we need to do using Ruby (and with

a whole lot of support from some Rails helper methods).

The trick when adding AJAX to an application is to take small steps. So, let’s
start with the most basic one. Let’s change the catalog page to send an AJAX

request to our server application, and have the application respond with the

HTML fragment containing the updated cart.

On the index page, we’re using button_to to create the link to the add_to_cart

action. Underneath the covers, button_to generates an HTML form. The helper

<%= button_to "Add to Cart", :action => :add_to_cart, :id => product %>

generates HTML that looks something like

<form method="post" action="/store/add_to_cart/1" class="button-to">

<input type="submit" value="Add to Cart" />

</form>

This is a standard HTML form, so a POST request will be generated when

the user clicks the submit button. We want to change this to send an AJAX
request instead. To do this, we’ll have to code the form explicitly, using a Rails

helper called form_remote_tag. The form_..._tag parts of the name tell you it’s

generating an HTML form, and the remote part tells you it will use AJAX to

create a remote procedure call to your application. So, edit index.rhtml in the

app/views/store directory, replacing the button_to call with something like this.

Download depot_l/app/views/store/index.rhtml

<% form_remote_tag :url => { :action => :add_to_cart, :id => product } do %>

<%= submit_tag "Add to Cart" %>

<% end %>

You tell form_remote_tag how to invoke your server application using the :url

parameter. This takes a hash of values that are the same as the trailing param-
eters we passed to button_to. The code inside the Ruby block (between the do

and end keywords) is the body of the form. In this case, we have a simple

submit button. From the user’s perspective, this page looks identical to the

previous one.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_l/app/views/store/index.rhtml
http://www.pragmaticprogrammer.com/titles/rails2

ITERATION D2: AN AJAX-BASED CART 131

While we’re dealing with the views, we also need to arrange for our application

to send the JavaScript libraries used by Rails to the user’s browser. We’ll talk

more about this in Chapter 23, The Web, V2.0, on page 523, but for now let’s

just add a call to javascript_include_tag to the <head> section of the store layout.

Download depot_l/app/views/layouts/store.rhtml

<html>

<head>

<title>Pragprog Books Online Store</title>

<%= stylesheet_link_tag "depot", :media => "all" %>

<%= javascript_include_tag :defaults %>

</head>

So far, we’ve arranged for the browser to send an AJAX request to our appli-

cation. The next step is to have the application return a response. The plan is

to create the updated HTML fragment that represents the cart and to have the
browser stick that HTML into the DOM3 as a replacement for the cart that’s

already there. The first change is to stop the add_to_cart action redirecting to

the index display. (I know, we just added that only a few pages back. Now we’re

taking it out again. We’re agile, right?)

Download depot_l/app/controllers/store_controller.rb

def add_to_cart

begin

product = Product.find(params[:id])

rescue ActiveRecord::RecordNotFound

logger.error("Attempt to access invalid product #{params[:id]}")

redirect_to_index("Invalid product")

else

@cart = find_cart

@cart.add_product(product)

end

end

Because of this change, when add_to_cart finishes handling the AJAX request,
Rails will look for an add_to_cart template to render. We deleted the old .rhtml

template back on page 129, so it looks like we’ll need to add something back

in. Let’s do something a little bit different.

Rails supports RJS templates—the JS stands for JavaScript. An .rjs template
is a way of getting JavaScript on the browser to do what you want, all by

writing server-side Ruby code. Let’s write our first: add_to_cart.rjs. It goes in

the app/views/store directory, just like any other template.

Download depot_l/app/views/store/add_to_cart.rjs

page.replace_html("cart", :partial => "cart", :object => @cart)

3. The Document Object Model. This is the browser’s internal representation of the structure and
content of the document being displayed. By manipulating the DOM, we cause the display to change
in front of the user’s eyes.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_l/app/views/layouts/store.rhtml
http://media.pragprog.com/titles/rails2/code/depot_l/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails2/code/depot_l/app/views/store/add_to_cart.rjs
http://www.pragmaticprogrammer.com/titles/rails2

ITERATION D2: AN AJAX-BASED CART 132

Let’s analyze that template. The page variable is an instance of something

called a JavaScript generator—a Rails class that knows how to create Java-

Script on the server and have it executed by the browser. Here, we tell it

to replace the content of the element on the current page with the id cart

with...something. The remaining parameters to replace_html look familiar. They
should—they’re the same ones we used to render the partial in the store lay-

out. This simple .rjs template renders the HTML that represents the cart. It

then tells the browser to replace the content of <div> whose id="cart" with that

HTML.

Does it work? It’s hard to show in a book, but it sure does. Make sure you

reload the index page in order to get the form_remote_tag and the JavaScript

libraries loaded into your browser. Then, click one of the Add to Cart buttons.

You should see the cart in the sidebar update. And you shouldn’t see your

browser show any indication of reloading the page. You’ve just created an
AJAX application.

Troubleshooting

Although Rails makes AJAX incredibly simple, it can’t make it foolproof. And,

because you’re dealing with the loose integration of a number of technologies,
it can be hard to work out why your AJAX doesn’t work. That’s one of the

reasons you should always add AJAX functionality one step at a time.

Here are a few hints if your Depot application didn’t show any AJAX magic.

• Did you delete the old add_to_cart.rhtml file?

• Did you remember to include the JavaScript libraries in the store layout

(using javascript_include_tag)?

• Does your browser have any special incantation to force it to reload every-

thing on a page? Sometimes browsers hold local cached versions of page

assets, and this can mess up testing. Now would be a good time to do a

full reload.

• Did you have any errors reported? Look in development.log in the logs

directory.

• Still looking at the log file, do you see incoming requests to the action

add_to_cart? If not, it means your browser isn’t making AJAX requests.
If the JavaScript libraries have been loaded (using View → Source in your

browser will show you the HTML), perhaps your browser has JavaScript

execution disabled?

• Some readers have reported that they have to stop and start their appli-
cation to get the AJAX-based cart to work.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

ITERATION D3: HIGHLIGHTING CHANGES 133

• If you’re using Internet Explorer, it might be running in what Microsoft

call quirks mode, which is backward compatible with old IE releases but

is also broken. IE switches into standards mode, which works better with

the AJAX stuff, if the first line of the downloaded page is an appropriate

DOCTYPE header. Our layouts use

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The Customer Is Never Satisfied

We’re feeling pretty pleased with ourselves. We changed a handful of lines

of code, and our boring old Web 1.0 application now sports Web 2.0 AJAX
speed stripes. We breathlessly call the client over. Without saying anything,

we proudly press Add to Cart and look at her, eager for the praise we know

will come. Instead, she looks surprised. “You called me over to show me a

bug?” she asks. “You click that button, and nothing happens.”

We patiently explain that, in fact, quite a lot happened. Just look at the cart in

the sidebar. See? When we add something, the quantity changes from 4 to 5.

“Oh,” she says, “I didn’t notice that.” And, if she didn’t notice the page update,
it’s likely our customers won’t either. Time for some user-interface hacking.

9.3 Iteration D3: Highlighting Changes

We said earlier that the javascript_include_tag helper downloads a number of
JavaScript libraries to the browser. One of those libraries, effects.js, lets you

decorate your web pages with a number of visually interesting effects.4 One

of these effects is the (now) infamous Yellow Fade Technique. This highlights

an element in a browser: by default it flashes the background yellow and then
gradually fades it back to white. Figure 9.2, on the next page, shows the Yellow

Fade Technique being applied to our cart: the image at the back shows the

original cart. The user clicks the Add to Cart button, and the count updates

to 2 as the line flares brighter. It then fades back to the background color over

a short period of time.

Let’s add this kind of highlight to our cart. Whenever an item in the cart is

updated (either when it is added or when we change the quantity), let’s flash

its background. That will make it clearer to our users that something has

changed, even though the whole page hasn’t been refreshed.

The first problem we have is identifying the most recently updated item in the

cart. Right now, each item is simply a <tr> element. We need to find a way to

flag the most recently changed one. The work starts in the Cart model. Let’s

4. effects.js is part of the Script.aculo.us library. Have a look at the visual effects page at
http://wiki.script.aculo.us/scriptaculous/show/VisualEffects to see the cool things you can do with it.

CLICK HERE to purchase this book now.

http://wiki.script.aculo.us/scriptaculous/show/VisualEffects
http://www.pragmaticprogrammer.com/titles/rails2

ITERATION D3: HIGHLIGHTING CHANGES 134

Figure 9.2: Our Cart with the Yellow Fade Technique

have the add_product method return the CartItem object that was either added

to the cart or had its quantity updated.

Download depot_m/app/models/cart.rb

def add_product(product)

current_item = @items.find {|item| item.product == product}

if current_item

current_item.increment_quantity

else

current_item = CartItem.new(product)

@items << current_item

end

current_item

end

Over in store_controller.rb, we’ll take that information and pass it down to the

template by assigning it to an instance variable.

Download depot_m/app/controllers/store_controller.rb

def add_to_cart

begin

product = Product.find(params[:id])

rescue ActiveRecord::RecordNotFound

logger.error("Attempt to access invalid product #{params[:id]}")

redirect_to_index("Invalid product")

else

@cart = find_cart

@current_item = @cart.add_product(product)

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_m/app/models/cart.rb
http://media.pragprog.com/titles/rails2/code/depot_m/app/controllers/store_controller.rb
http://www.pragmaticprogrammer.com/titles/rails2

ITERATION D4: HIDE AN EMPTY CART 135

In the _cart_item.rhtml partial, we then check to see whether the item we’re

rendering is the one that just changed. If so, we tag it with an id of current_item.

Download depot_m/app/views/store/_cart_item.rhtml

<% if cart_item == @current_item %>

<tr id="current_item">

<% else %>

<tr>

<% end %>

<td><%= cart_item.quantity %>×</td>

<td><%= h(cart_item.title) %></td>

<td class="item-price"><%= number_to_currency(cart_item.price) %></td>

</tr>

As a result of these three minor changes, the <tr> element of the most recently

changed item in the cart will be tagged with id="current_item". Now we just need

to tell the JavaScript to invoke the highlight effect on that item. We do this in
the existing add_to_cart.rjs template, adding a call to the visual_effect method.

Download depot_m/app/views/store/add_to_cart.rjs

page.replace_html("cart", :partial => "cart", :object => @cart)

page[:current_item].visual_effect :highlight,

:startcolor => "#88ff88",

:endcolor => "#114411"

See how we identified the browser element that we wanted to apply the effect

to by passing :current_item to the page? We then asked for the highlight visual

effect and overrode the default yellow/white transition with colors that work

better with our design. Click to add an item to the cart, and you’ll see the

changed item in the cart glow a light green before fading back to merge with
the background.

9.4 Iteration D4: Hide an Empty Cart

One last request from the customer: right now, even carts with nothing in

them are still displayed in the sidebar. Can we arrange for the cart to appear

only when it has some content? But of course!

In fact, we have a number of options. The simplest is probably to include the
HTML for the cart only if the cart has something in it. We can do this totally

within the _cart partial.

<% unless cart.items.empty? %>

<div class="cart-title">Your Cart</div>

<table>

<%= render(:partial => "cart_item", :collection => cart.items) %>

<tr class="total-line">

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_m/app/views/store/_cart_item.rhtml
http://media.pragprog.com/titles/rails2/code/depot_m/app/views/store/add_to_cart.rjs
http://www.pragmaticprogrammer.com/titles/rails2

ITERATION D4: HIDE AN EMPTY CART 136

<td colspan="2">Total</td>

<td class="total-cell"><%= number_to_currency(cart.total_price) %></td>

</tr>

</table>

<%= button_to "Empty cart", :action => :empty_cart %>

<% end %>

Although this works, the user interface is somewhat brutal: the whole side-
bar redraws on the transition between a cart that’s empty and a cart with

something in it. So let’s not use this code. Instead, let’s smooth it out a little.

The Script.aculo.us effects library contains a number of nice transitions that

make elements appear. Let’s use blind_down, which will smoothly reveal the
cart, sliding the rest of the sidebar down to make room.

Not surprisingly, we’ll use our existing .rjs template to call the effect. Because

the add_to_cart template is invoked only when we add something to the cart,

then we know that we have to reveal the cart in the sidebar whenever there is
exactly one item in the cart (because that means that previously the cart was

empty and hence hidden). And, because the cart should be visible before we

start the highlight effect, we’ll add the code to reveal the cart before the code

that triggers the highlight.

The template now looks like this.

Download depot_n/app/views/store/add_to_cart.rjs

page.replace_html("cart", :partial => "cart", :object => @cart)

page[:cart].visual_effect :blind_down if @cart.total_items == 1

page[:current_item].visual_effect :highlight,

:startcolor => "#88ff88",

:endcolor => "#114411"

This won’t yet work, because we don’t have a total_items method in our cart
model.

Download depot_n/app/models/cart.rb

def total_items

@items.sum { |item| item.quantity }

end

We have to arrange to hide the cart when it’s empty. There are two basic ways
of doing this. One, illustrated by the code at the start of this section, is not

to generate any HTML at all. Unfortunately, if we do that, then when we add

something to the cart and suddenly create the cart HTML, we see a flicker in

the browser as the cart is first displayed and then hidden and slowly revealed

by the blind_down effect.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_n/app/views/store/add_to_cart.rjs
http://media.pragprog.com/titles/rails2/code/depot_n/app/models/cart.rb
http://www.pragmaticprogrammer.com/titles/rails2

ITERATION D4: HIDE AN EMPTY CART 137

A better way to handle the problem is to create the cart HTML but set the CSS

style to display: none if the cart is empty. To do that, we need to change the

store.rhtml layout in app/views/layouts. Our first attempt is something like this.

<div id="cart"

<% if @cart.items.empty? %>

style="display: none"

<% end %>

>

<%= render(:partial => "cart", :object => @cart) %>

</div>

This code adds the CSS style= attribute to the <div> tag, but only if the cart is

empty. It works fine, but it’s really, really ugly. That dangling > character looks

misplaced (even though it isn’t), and the way logic is interjected into the middle
of a tag is the kind of thing that gives templating languages a bad name. Let’s

not let that kind of ugliness litter our code. Instead, let’s create an abstraction

that hides it—we’ll write a helper method.

Helper Methods

Whenever we want to abstract some processing out of a view (any kind of view),

we want to write a helper method.

If you look in the app directory, you’ll find four subdirectories.

depot> ls -p app

controllers/ helpers/ models/ views/

Not surprisingly, our helper methods go in the helpers directory. If you look in

there, you’ll find it already contains some files.

depot> ls -p app/helpers

admin_helper.rb application_helper.rb store_helper.rb

The Rails generators automatically created a helper file for each of our con-

trollers (admin and store). The Rails command itself (the one that created

the application initially) created the file application_helper.rb. The methods we
define in a controller-specific helper are available to views referenced by that

controller. Methods in the overall application_helper file are available in all the

application’s views. This gives us a choice for our new helper. Right now, we

need it just in the store view, so let’s start by putting it there.

Let’s have a look at the file store_helper.rb in the helpers directory.

module StoreHelper

end

Let’s write a helper method called hidden_div_if. It takes a condition, an optional

set of attributes, and a block. It wraps the output generated by the block in a
<div> tag, adding the display: none style if the condition is true. We’d use it in

the store layout like this.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

ITERATION D4: HIDE AN EMPTY CART 138

Download depot_n/app/views/layouts/store.rhtml

<% hidden_div_if(@cart.items.empty?, :id => "cart") do %>

<%= render(:partial => "cart", :object => @cart) %>

<% end %>

We’ll write our helper so that it is local to the store controller by adding it to

store_helper.rb in the app/helpers directory.

Download depot_n/app/helpers/store_helper.rb

module StoreHelper

def hidden_div_if(condition, attributes = {}, &block)

if condition

attributes["style"] = "display: none"

end

content_tag("div", attributes, &block)

end

end

This code uses the Rails standard helper, content_tag, which can be used to

wrap the output created by a block in a tag. By using the &block notation, we
get Ruby to pass the block that was given to hidden_div_if down to content_tag.

And, finally, we need to stop setting the message in the flash that we used to

display when the user empties a cart. It really isn’t needed any more, because

the cart clearly disappears from the sidebar when the catalog index page is
redrawn. But there’s another reason to remove it, too. Now that we’re using

AJAX to add products to the cart, the main page doesn’t get redrawn between

requests as people shop. That means we’ll continue to display the flash mes-

sage saying the cart is empty even as we display a cart in the sidebar.

Download depot_n/app/controllers/store_controller.rb

def empty_cart

session[:cart] = nil

redirect_to_index

end

Although this might seem like a lot of steps, it really isn’t. All we did to make

the cart hide and reveal itself was to make the CSS display style conditional

on the number of items in the cart and to use the .rjs template to invoke the
blind_down effect when the cart went from being empty to having one item.

Everyone is excited to see our fancy new interface. In fact, because our com-

puter is on the office network, our colleagues point their browsers at our test

application and try it for themselves. Lots of low whistles follow as folks mar-
vel at the way the cart appears and then updates. Everyone loves it. Everyone,

that is, except Bruce. Bruce doesn’t trust JavaScript running in his browser

and has it turned off. And, with JavaScript disabled, all our fancy AJAX stops

working. When Bruce adds something to his cart, he sees something strange.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_n/app/views/layouts/store.rhtml
http://media.pragprog.com/titles/rails2/code/depot_n/app/helpers/store_helper.rb
http://media.pragprog.com/titles/rails2/code/depot_n/app/controllers/store_controller.rb
http://www.pragmaticprogrammer.com/titles/rails2

ITERATION D5: DEGRADING IF JAVASCRIPT IS DISABLED 139

$("cart").update("<h1>Your Cart</h1>\n\n\n \n <li

id=\"current_item\">\n\n 3 × Pragmatic Project

Automation\n\n\n \n<form method=\"post\"

action=\"/store/empty_cart\" class=\"button-to...

Clearly this won’t do. We need to have our application work if our users have

disabled JavaScript in their browsers. That’ll be our next iteration.

9.5 Iteration D5: Degrading If Javascript Is Disabled

Remember, back on page 128, we arranged for the cart to appear in the side-
bar. We did this before we added a line of AJAX code to the application. If we

could fall back to this behavior when JavaScript is disabled in the browser,

then the application would work for Bruce as well as for our other co-workers.

This basically means that if the incoming request to add_to_cart doesn’t come

from JavaScript, we want to do what the original application did and redirect
to the index page. When the index displays, the updated cart will appear in

the sidebar.

If a user clicks the button inside a form_remote_tag, one of two things happens.

If JavaScript is disabled, the target action in the application is invoked using
a regular HTTP POST request—it acts just like a regular form. If, however,

JavaScript is enabled, it overrides this conventional POST and instead uses a

JavaScript object to establish a back channel with the server. This object is an

instance of class XmlHTTPRequest. Because that’s a mouthful, most folks (and

Rails) abbreviate it to xhr.

So, on the server, we can tell that we’re talking to a JavaScript-enabled browser

by testing to see whether the incoming request was generated by an xhr object.

And the Rails request object, available inside controllers and views, makes it

easy to test for this condition: it provides an xhr? method. As a result, making
our application work regardless of whether JavaScript is enabled takes just a

single line of code in the add_to_cart action.

Download depot_o/app/controllers/store_controller.rb

def add_to_cart

begin

product = Product.find(params[:id])

rescue ActiveRecord::RecordNotFound

logger.error("Attempt to access invalid product #{params[:id]}")

redirect_to_index("Invalid product")

else

@cart = find_cart

@current_item = @cart.add_product(product)

redirect_to_index unless request.xhr?

end

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/rails2/code/depot_o/app/controllers/store_controller.rb
http://www.pragmaticprogrammer.com/titles/rails2

WHAT WE JUST DID 140

9.6 What We Just Did

In this iteration we added AJAX support to our cart.

• We moved the shopping cart into the sidebar. We then arranged for the
add_to_cart action to redisplay the catalog page.

• We used form_remote_tag to invoke the add_to_cart action using AJAX.

• We then used an .rjs template to update the page with just the cart’s
HTML.

• To help the user see changes to the cart, we added a highlight effect,

again using the .rjs template.

• We wrote a helper method that hides the cart when it is empty and used

the .rjs template to reveal it when an item is added.

• Finally, we made our application work if the user’s browser has Java-

Script disabled by reverting to the behavior we implemented before start-
ing on the AJAX journey.

The key point to take away is the incremental style of AJAX development.

Start with a conventional application, and then add AJAX features, one by

one. AJAX can be hard to debug: by adding it slowly to an application, you
make it easier to track down what changed if your application stops working.

And, as we saw, starting with a conventional application makes it easier to

support both AJAX and non-AJAX behavior in the same codebase.

Finally, a couple of hints. First, if you plan to do a lot of AJAX development,
you’ll probably need to get familiar with your browser’s JavaScript debugging

facilities and with its DOM inspectors. Chapter 8 of Pragmatic Ajax: A Web 2.0

Primer [JG06] has a lot of useful tips. And, second, I find it useful to run two

different browsers when I’m developing (I personally use Firefox and Safari on

my Mac). I have JavaScript enabled in one, disabled in the other. Then, as I
add some new feature, I poke at it with both browsers to make sure it works

regardless of the state of JavaScript.

Playtime

Here’s some stuff to try on your own.

• The cart is currently hidden when the user empties it by redrawing the

entire catalog. Can you change the application to use the Script.aculo.us

blind_up instead?

• Does the change you made work if the browser has JavaScript disabled?

• Experiment with other visual effects for new cart items. For example, can

you set their initial state to hidden and then have them grow into place?

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/rails2

WHAT WE JUST DID 141

Does this make it problematic to share the cart item partial between the

AJAX code and the initial page display?

• Add a link next to each item in the cart. When clicked it should invoke

an action to decrement the quantity of the item, deleting it from the cart
when the quantity reaches zero. Get it working without using AJAX first,

and then add the AJAX goodness.

(You’ll find hints at http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime)

CLICK HERE to purchase this book now.

http://wiki.pragprog.com/cgi-bin/wiki.cgi/RailsPlayTime
http://www.pragmaticprogrammer.com/titles/rails2

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles continue
the well-known Pragmatic Programmer style, and continue to garner awards and rave reviews. As
development gets more and more difficult, the Pragmatic Programmers will be there with more titles
and products to help you stay on top of your game.

Visit Us Online
Agile Web Development with Rails

http://pragmaticprogrammer.com/titles/rails2

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with our wiki,
and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available for purchase
at our store: pragmaticprogrammer.com/titles/rails2.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/rails2
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
pragmaticprogrammer.com/titles/rails2
www.pragmaticprogrammer.com/catalog

