
Extracted from:

Agile Web Development with Rails 6

This PDF file contains pages extracted from Agile Web Development with Rails 6,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Agile Web Development with Rails 6

Sam Ruby
David Bryant Copeland

with Dave Thomas

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Adaobi Obi Tulton
Copy Editor: Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-670-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Hello, Rails!
We can’t help it—we just have to write a Hello, World! program to try a new
system. Let’s start by creating a simple application that sends our cheery
greeting to a browser. After we get that working, we’ll embellish it with the
current time and links.

As you’ll explore further in Chapter 3, The Architecture of Rails Applications,
on page ?, Rails is a model-view-controller (MVC) framework. Rails accepts
incoming requests from a browser, decodes the request to find a controller,
and calls an action method in that controller. The controller then invokes a
particular view to display the results to the user. The good news is that Rails
takes care of most of the internal plumbing that links all these actions. To
write our Hello, World! application, we need code for a controller and a view,
and we need a route to connect the two. We don’t need code for a model,
because we’re not dealing with any data. Let’s start with the controller.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rails6
http://forums.pragprog.com/forums/rails6

In the same way that we used the rails command to create a new Rails appli-
cation, we can also use a generator script to create a new controller for our
project. This command is rails generate. So, to create a controller called say, we
make sure we’re in the demo directory and run the command, passing in the
name of the controller we want to create and the names of the actions we
intend for this controller to support:

demo> bin/rails generate controller Say hello goodbye
Running via Spring preloader in process 2503

create app/controllers/say_controller.rb
route get 'say/hello'

get 'say/goodbye'
invoke erb
create app/views/say
create app/views/say/hello.html.erb
create app/views/say/goodbye.html.erb
invoke test_unit
create test/controllers/say_controller_test.rb
invoke helper
create app/helpers/say_helper.rb
invoke test_unit
invoke assets
invoke scss
create app/assets/stylesheets/say.scss

The rails generate command logs the files and directories it examines, noting
when it adds new Ruby scripts or directories to our application. For now,
we’re interested in one of these scripts and (in a minute) the .html.erb files.

The first source file we’ll be looking at is the controller. You can find it in the
app/controllers/say_controller.rb file. Let’s take a look at it:

rails6/demo1/app/controllers/say_controller.rb
class SayController < ApplicationController

def hello➤

end➤

def goodbye
end

end

Pretty minimal, eh? SayController is a class that inherits from ApplicationController,
so it automatically gets all the default controller behavior. What does this
code have to do? For now, it does nothing—we simply have empty action
methods named hello() and goodbye(). To understand why these methods are
named this way, you need to look at the way Rails handles requests.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails6/code/rails6/demo1/app/controllers/say_controller.rb
http://pragprog.com/titles/rails6
http://forums.pragprog.com/forums/rails6

Rails and Request URLs
Like any other web application, a Rails application appears to its users to be
associated with a URL. When you point your browser at that URL, you’re
talking to the application code, which generates a response to you.

Let’s try it now. Navigate to the URL http://localhost:3000/say/hello in a browser.
You’ll see something that looks like the following screenshot.

Say#hello
Find	me	in app/views/say/hello.html.erb

Our First Action
At this point, we can see not only that we’ve connected the URL to our con-
troller but also that Rails is pointing the way to our next step—namely, to tell
Rails what to display. That’s where views come in. Remember when we ran
the script to create the new controller? That command added several files
and a new directory to our application. That directory contains the template
files for the controller’s views. In our case, we created a controller named say,
so the views will be in the app/views/say directory.

By default, Rails looks for templates in a file with the same name as the action
it’s handling. In our case, that means we need to replace a file called
hello.html.erb in the app/views/say directory. (Why .html.erb? We’ll explain in a
minute.) For now, let’s put some basic HTML in there:

rails6/demo1/app/views/say/hello.html.erb
<h1>Hello from Rails!</h1>

Save the hello.html.erb file, and refresh your browser window. You should see
it display our friendly greeting, as in the following screenshot.

Hello	from Rails!

In total, we’ve looked at two files in our Rails application tree. We looked at
the controller, and we modified a template to display a page in the browser.

• Click HERE to purchase this book now. discuss

Hello, Rails! • 7

http://localhost:3000/say/hello
http://media.pragprog.com/titles/rails6/code/rails6/demo1/app/views/say/hello.html.erb
http://pragprog.com/titles/rails6
http://forums.pragprog.com/forums/rails6

These files live in standard locations in the Rails hierarchy: controllers go
into app/controllers, and views go into subdirectories of app/views. You can see
this structure in the following diagram.

class SayController < ApplicationController
 def hello
 end
end

<h1>Hello from Rails!</h1>

Making It Dynamic
So far, our Rails application is pretty boring—it just displays a static page.
To make it more dynamic, let’s have it show the current time each time it
displays the page.

To do this, we need to change the template file in the view—it now needs to
include the time as a string. That raises two questions. First, how do we add
dynamic content to a template? Second, where do we get the time from?

Dynamic Content

You can create dynamic templates in Rails in many ways. The most common
way, which we’ll use here, is to embed Ruby code in the template. That’s why
the template file is named hello.html.erb; the .html.erb suffix tells Rails to expand
the content in the file using a system called ERB.

ERB is a filter, installed as part of the Rails installation, that takes an .erb file
and outputs a transformed version. The output file is often HTML in Rails,
but it can be anything. Normal content is passed through without being
changed. However, content between <%= and %> is interpreted as Ruby code
and executed. The result of that execution is converted into a string, and that
value is substituted in the file in place of the <%=…%> sequence. For example,
change hello.html.erb to display the current time:

rails6/demo2/app/views/say/hello.html.erb
<h1>Hello from Rails!</h1>
<p>➤

It is now <%= Time.now %>➤

</p>➤

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails6/code/rails6/demo2/app/views/say/hello.html.erb
http://pragprog.com/titles/rails6
http://forums.pragprog.com/forums/rails6

When we refresh our browser window, we see the time displayed using Ruby’s
standard format, as shown in the following screenshot.

Hello	from Rails!
It	is	now	2019-03-24	16:14:28	-0400

Notice that the time displayed updates each time the browser window is
refreshed. It looks as if we’re really generating dynamic content.

Making Development Easier

You might have noticed something about the development we’ve been doing so far.
As we’ve been adding code to our application, we haven’t had to restart the running
application. It’s been happily chugging away in the background. And yet each change
we make is available whenever we access the application through a browser. What
gives?

It turns out that the Rails dispatcher is pretty clever. In development mode (as opposed
to testing or production), it automatically reloads application source files when a new
request comes along. That way, when we edit our application, the dispatcher makes
sure it’s running the most recent changes. This is great for development.

However, this flexibility comes at a cost: it causes a short pause after you enter a
URL before the application responds. That’s caused by the dispatcher reloading stuff.
For development it’s a price worth paying, but in production it would be unacceptable.
For this reason, this feature is disabled for production deployment.

Adding the Time

Our original problem was to display the time to users of our application. We
now know how to make our application display dynamic data. The second
issue we have to address is working out where to get the time from.

We’ve shown that the approach of embedding a call to Ruby’s Time.now() method
in our hello.html.erb template works. Each time they access this page, users will
see the current time substituted into the body of the response. And for our
trivial application, that might be good enough. In general, though, we probably
want to do something slightly different. We’ll move the determination of the
time to be displayed into the controller and leave the view with the job of

• Click HERE to purchase this book now. discuss

Hello, Rails! • 9

http://pragprog.com/titles/rails6
http://forums.pragprog.com/forums/rails6

displaying it. We’ll change our action method in the controller to set the time
value into an instance variable called @time:

rails6/demo3/app/controllers/say_controller.rb
class SayController < ApplicationController

def hello
@time = Time.now➤

end

def goodbye
end

end

In the .html.erb template, we’ll use this instance variable to substitute the time
into the output:

rails6/demo3/app/views/say/hello.html.erb
<h1>Hello from Rails!</h1>
<p>

It is now <%= @time %>➤

</p>

When we refresh our browser window, we again see the current time, showing
that the communication between the controller and the view was successful.

Why did we go to the extra trouble of setting the time to be displayed in the
controller and then using it in the view? Good question. In this application,
it doesn’t make much difference, but by putting the logic in the controller
instead, we buy ourselves some benefits. For example, we may want to extend
our application in the future to support users in many countries. In that case,
we’d want to localize the display of the time, choosing a time appropriate to
the user’s time zone. That would require a fair amount of application-level
code, and it would probably not be appropriate to embed it at the view level.
By setting the time to display in the controller, we make our application more
flexible: we can change the time zone in the controller without having to
update any view that uses that time object. The time is data, and it should
be supplied to the view by the controller. We’ll see a lot more of this when we
introduce models into the equation.

The Story So Far

Let’s briefly review how our current application works.

1. The user navigates to our application. In our case, we do that using a
local URL such as http://localhost:3000/say/hello.

2. Rails then matches the route pattern, which it previously split into two
parts and analyzed. The say part is taken to be the name of a controller,

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails6/code/rails6/demo3/app/controllers/say_controller.rb
http://media.pragprog.com/titles/rails6/code/rails6/demo3/app/views/say/hello.html.erb
http://localhost:3000/say/hello
http://pragprog.com/titles/rails6
http://forums.pragprog.com/forums/rails6

so Rails creates a new instance of the Ruby SayController class (which it
finds in app/controllers/say_controller.rb).

3. The next part of the pattern, hello, identifies an action. Rails invokes a method
of that name in the controller. This action method creates a new Time object
holding the current time and tucks it away in the @time instance variable.

4. Rails looks for a template to display the result. It searches the app/views
directory for a subdirectory with the same name as the controller (say) and
in that subdirectory for a file named after the action (hello.html.erb).

5. Rails processes this file through the ERB templating system, executing
any embedded Ruby and substituting in values set up by the controller.

6. The result is returned to the browser, and Rails finishes processing this
request.

This isn’t the whole story. Rails gives you lots of opportunities to override this
basic workflow (and we’ll be taking advantage of them shortly). As it stands,
our story illustrates convention over configuration, one of the fundamental
parts of the philosophy of Rails. Rails applications are typically written using
little or no external configuration. That’s because Rails provides convenient
defaults, and because you apply certain conventions to how a URL is construct-
ed, which file a controller definition is placed in, or which class name and
method names are used. Things knit themselves together in a natural way.

• Click HERE to purchase this book now. discuss

Hello, Rails! • 11

http://pragprog.com/titles/rails6
http://forums.pragprog.com/forums/rails6

