
Extracted from:

Agile Web Development with Rails 6

This PDF file contains pages extracted from Agile Web Development with Rails 6,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Agile Web Development with Rails 6

Sam Ruby
David Bryant Copeland

with Dave Thomas

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Adaobi Obi Tulton
Copy Editor: Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-670-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 18

In this chapter, you'll see:
• The directory structure of a Rails application
• Naming conventions
• Adding Rake tasks
• Configuration

Finding Your Way Around Rails
Having survived our Depot project, you are now prepared to dig deeper into
Rails. For the rest of the book, we’ll go through Rails topic by topic (which
pretty much means module by module). You have seen most of these modules
in action before. We’ll cover not only what each module does but also how to
extend or even replace the module and why you might want to do so.

The chapters in Part III cover all the major subsystems of Rails: Active Record,
Active Resource, Action Pack (including both Action Controller and Action
View), and Active Support. This is followed by an in-depth look at migrations.

Then we are going to delve into the interior of Rails and show how the compo-
nents are put together, how they start up, and how they can be replaced.
Having shown how the parts of Rails can be put together, we’ll complete this
book with a survey of a number of popular replacement parts, many of which
can be used outside of Rails.

We need to set the scene. This chapter covers all the high-level stuff you need
to know to understand the rest: directory structures, configuration, and
environments.

Where Things Go
Rails assumes a certain runtime directory layout and provides application
and scaffold generators, which will create this layout for you. For example, if
we generate my_app using the command rails newmy_app, the top-level directory
for our new application appears as shown in the figure on page 6.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rails6
http://forums.pragprog.com/forums/rails6

Joe asks:

So, Where’s Rails?
One of the interesting aspects of Rails is how componentized it is. From a developer’s
perspective, you spend all your time dealing with high-level modules such as Active
Record and Action View. There is a component called Rails, but it sits below the
other components, silently orchestrating what they do and making them all work
together seamlessly. Without the Rails component, not much would happen. But at
the same time, only a small part of this underlying infrastructure is relevant to
developers in their day-to-day work. We’ll cover the parts that are relevant in the rest
of this chapter.

Let’s start with the text files in the top of the application directory:

• config.ru configures the Rack Webserver Interface, either to create Rails
Metal applications or to use Rack Middlewares in your Rails application.
These are discussed further in the Rails Guides.1

1. http://guides.rubyonrails.org/rails_on_rack.html

• 6

• Click HERE to purchase this book now. discuss

http://guides.rubyonrails.org/rails_on_rack.html
http://pragprog.com/titles/rails6
http://forums.pragprog.com/forums/rails6

• Gemfile specifies the dependencies of your Rails application. You have
already seen this in use when the bcrypt-ruby gem was added to the Depot
application. Application dependencies also include the database, web
server, and even scripts used for deployment.

Technically, this file isn’t used by Rails but rather by your application. You
can find calls to the Bundler2 in the config/application.rb and config/boot.rb files.

• Gemfile.lock records the specific versions for each of your Rails application’s
dependencies. This file is maintained by Bundler and should be checked
into your repository.

• Rakefile defines tasks to run tests, create documentation, extract the current
structure of your schema, and more. Type rake -T at a prompt for the full
list. Type rake -D task to see a more complete description of a specific task.

• README contains general information about the Rails framework.

Let’s look at what goes into each directory (although not necessarily in order).

A Place for Our Application
Most of our work takes place in the app directory. The main code for the
application lives below the app directory, as shown in the figure on page 8.
We’ll talk more about the structure of the app directory as we look at the var-
ious Rails modules such as Active Record, Action Controller, and Action View
in more detail later in the book.

A Place for Our Tests
As we have seen in Iteration B2: Unit Testing of Models, on page ?, Iteration
C4: Functional Testing of Controllers, on page ?, and Iteration H2: Testing
Our JavaScript Functionality, on page ?, Rails has ample provisions for
testing your application, and the test directory is the home for all testing-
related activities, including fixtures that define data used by our tests.

A Place for Supporting Libraries
The lib directory holds application code that doesn’t fit neatly into a model,
view, or controller. For example, you may have written a library that creates
PDF receipts that your store’s customers can download. These receipts are
sent directly from the controller to the browser (using the send_data() method).
The code that creates these PDF receipts will sit naturally in the lib directory.

2. https://github.com/bundler/bundler

• Click HERE to purchase this book now. discuss

Where Things Go • 7

https://github.com/bundler/bundler
http://pragprog.com/titles/rails6
http://forums.pragprog.com/forums/rails6

The lib directory is also a good place to put code that’s shared among models,
views, or controllers. Maybe you need a library that validates a credit card
number’s checksum, that performs some financial calculation, or that works
out the date of Easter. Anything that isn’t directly a model, view, or controller
should be slotted into lib.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rails6
http://forums.pragprog.com/forums/rails6

Don’t feel that you have to stick a bunch of files directly into the lib directory.
Feel free to create subdirectories in which you group related functionality
under lib. For example, on the Pragmatic Programmer site, the code that gen-
erates receipts, customs documentation for shipping, and other PDF-formatted
documentation is in the directory lib/pdf_stuff.

In previous versions of Rails, the files in the lib directory were automatically
included in the load path used to resolve require statements. This is now an
option that you need to explicitly enable. To do so, place the following in
config/application.rb:

config.autoload_paths += %W(#{Rails.root}/lib)

Once you have files in the lib directory and the lib added to your autoload
paths, you can use them in the rest of your application. If the files contain
classes or modules and the files are named using the lowercase form of the
class or module name, then Rails will load the file automatically. For example,
we might have a PDF receipt writer in the file receipt.rb in the directory lib/pdf_stuff.
As long as our class is named PdfStuff::Receipt, Rails will be able to find and load
it automatically.

For those times where a library cannot meet these automatic loading condi-
tions, you can use Ruby’s require mechanism. If the file is in the lib directory,
you can require it directly by name. For example, if our Easter calculation
library is in the file lib/easter.rb, we can include it in any model, view, or con-
troller using this:

require "easter"

If the library is in a subdirectory of lib, remember to include that directory’s
name in the require statement. For example, to include a shipping calculation
for airmail, we might add the following line:

require "shipping/airmail"

A Place for Our Rake Tasks

You’ll also find an empty tasks directory under lib. This is where you can write
your own Rake tasks, allowing you to add automation to your project. This
isn’t a book about Rake, so we won’t elaborate, but here’s a simple example.

Rails provides a Rake task to tell you the latest migration that has been per-
formed. But it may be helpful to see a list of all the migrations that have been
performed. We’ll write a Rake task that prints the versions listed in the
schema_migration table. These tasks are Ruby code, but they need to be placed
into files with the extension .rake. We’ll call ours db_schema_migrations.rake:

• Click HERE to purchase this book now. discuss

Where Things Go • 9

http://pragprog.com/titles/rails6
http://forums.pragprog.com/forums/rails6

rails6/depot_u/lib/tasks/db_schema_migrations.rake
namespace :db do

desc "Prints the migrated versions"
task :schema_migrations => :environment do

puts ActiveRecord::Base.connection.select_values(
'select version from schema_migrations order by version')

end
end

We can run this from the command line just like any other Rake task:

depot> bin/rails db:schema_migrations
(in /Users/rubys/Work/...)
20190425000001
20190425000002
20190425000003
20190425000004
20190425000005
20190425000006
20190425000007

Consult the Rake documentation at https://github.com/ruby/rake#readme for more
information on writing Rake tasks.

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails6/code/rails6/depot_u/lib/tasks/db_schema_migrations.rake
https://github.com/ruby/rake#readme
http://pragprog.com/titles/rails6
http://forums.pragprog.com/forums/rails6

