
Extracted from:

Agile Web Development with Rails 7

This PDF file contains pages extracted from Agile Web Development with Rails 7,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Agile Web Development with Rails 7

Sam Ruby

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Adaobi Obi Tulton
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-929-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—May 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Iteration C1: Creating the Catalog Listing
We’ve already created the products controller, used by the seller to administer
the Depot application. Now it’s time to create a second controller, one that
interacts with the paying customers. Let’s call it Store:

depot> bin/rails generate controller Store index
create app/controllers/store_controller.rb
route get 'store/index'

invoke tailwindcss
create app/views/store
create app/views/store/index.html.erb
invoke test_unit
create test/controllers/store_controller_test.rb
invoke helper
create app/helpers/store_helper.rb
invoke test_unit

As in the previous chapter, where we used the generate utility to create a con-
troller and associated scaffolding to administer the products, here we’ve asked
it to create a controller (the StoreController class in the store_controller.rb file) con-
taining a single action method, index().

While everything is already set up for this action to be accessed via http://local-
host:3000/store/index (feel free to try it!), we can do better. Let’s simplify things and
make this the root URL for the website. We do this by editing config/routes.rb:

rails7/depot_d/config/routes.rb
Rails.application.routes.draw do

root 'store#index', as: 'store_index'➤

resources :products
Define your application routes per the DSL in
https://guides.rubyonrails.org/routing.html

Defines the root path route ("/")
root "articles#index"

end

We’ve replaced the get 'store/index' line with a call to define a root path, and in
the process we added an as: 'store_index' option. The latter tells Rails to create
store_index_path and store_index_url accessor methods, enabling existing code—
and tests!—to continue to work correctly. Let’s try it. Point a browser at
http://localhost:3000/, and up pops our web page. See the following screenshot.

• Click HERE to purchase this book now. discuss

http://localhost:3000/store/index
http://localhost:3000/store/index
http://media.pragprog.com/titles/rails7/code/rails7/depot_d/config/routes.rb
http://localhost:3000/
http://pragprog.com/titles/rails7
http://forums.pragprog.com/forums/rails7

Store#index
Find me in app/views/store/index.html.erb

It might not make us rich, but at least we know everything is wired together
correctly. It even tells us where to find the template file that draws this page.

Let’s start by displaying a list of all the products in our database. We know
that eventually we’ll have to be more sophisticated, breaking them into cate-
gories, but this’ll get us going.

We need to get the list of products out of the database and make it available
to the code in the view that’ll display the table. This means we have to change
the index() method in store_controller.rb. We want to program at a decent level of
abstraction, so let’s assume we can ask the model for a list of the products:

rails7/depot_d/app/controllers/store_controller.rb
class StoreController < ApplicationController

def index
@products = Product.order(:title)➤

end
end

We asked our customer if she had a preference regarding the order things should
be listed in, and we jointly decided to see what happens if we display the products
in alphabetical order. We do this by adding an order(:title) call to the Product model.

Now we need to write our view template. To do this, edit the index.html.erb file
in app/views/store. (Remember that the path name to the view is built from the
name of the controller [store] and the name of the action [index]. The .html.erb
part signifies an ERB template that produces an HTML result.)

rails7/depot_d/app/views/store/index.html.erb
<div class="w-full">
<% if notice.present? %>

<p class="py-2 px-3 bg-green-50 mb-5 text-green-500 font-medium rounded-lg
inline-block" id="notice">

<%= notice %>
</p>

<% end %>

<h1 class="font-bold text-xl mb-6 pb-2 border-b-2">
Your Pragmatic Catalog

</h1>

<% @products.each do |product| %>

<li class='flex mb-6'>

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/rails7/code/rails7/depot_d/app/controllers/store_controller.rb
http://media.pragprog.com/titles/rails7/code/rails7/depot_d/app/views/store/index.html.erb
http://pragprog.com/titles/rails7
http://forums.pragprog.com/forums/rails7

<%= image_tag(product.image_url,
class: 'object-contain w-40 h-48 shadow mr-6') %>

<div>
<h2 class="font-bold text-lg mb-3"><%= product.title %></h2>

<p>
<%= sanitize(product.description) %>

</p>

<div class="mt-3">
<%= product.price %>

</div>
</div>

<% end %>

</div>

Note the use of the sanitize() method for the description. This allows us to safely1

add HTML stylings to make the descriptions more interesting for our customers.

We also used the image_tag() helper method. This generates an HTML
tag using its argument as the image source.

A page refresh brings up the display shown in the following screenshot. It’s
still pretty basic, and it seems to be missing something. The customer happens
to be walking by as we ponder this, and she points out that she’d also like to
see a decent-looking banner and sidebar on public-facing pages.

1. https://owasp.org/www-community/attacks/xss/

• Click HERE to purchase this book now. discuss

Iteration C1: Creating the Catalog Listing • 7

https://owasp.org/www-community/attacks/xss/
http://pragprog.com/titles/rails7
http://forums.pragprog.com/forums/rails7

Your Pragmatic Catalog

Design and Build Great Web APIs

Robust, Reliable, and Resilient APIs are transforming the business world at
an increasing pace. Gain
the essential skills needed to quickly design, build,
and deploy
quality web APIs that are robust, reliable, and resilient. Go from
initial design through prototyping and implementation to deployment of
mission-critical APIs for your organization. Test, secure, and deploy
your API
with confidence and avoid the “release into production”
panic. Tackle just
about any API challenge with more than a dozen
open-source utilities and
common programming patterns you can apply
right away.

24.95

Docker for Rails Developers

Build, Ship, and Run Your Applications Everywhere Docker does
for DevOps
what Rails did for web development—it gives you a new set
of
superpowers. Gone are “works on my machine” woes and lengthy setup
tasks, replaced instead by a simple, consistent, Docker-based
development
environment that will have your team up and running in
seconds. Gain
hands-on, real-world experience with a tool that’s
rapidly becoming
fundamental to software development. Go from zero all
the way to
production as Docker transforms the massive leap of
deploying your app in
the cloud into a baby step.

19.95

Modern CSS with Tailwind

Flexible Styling Without the Fuss Tailwind CSS is an exciting new CSS
framework that allows you to
design your site by composing simple utility
classes to create complex
effects. With Tailwind, you can style your text,
move your items on
the page, design complex page layouts, and adapt your
design for
devices from a phone to a wide-screen monitor. With this book,
you’ll
learn how to use the Tailwind for its flexibility and its consistency,
from the smallest detail of your typography to the entire design of
your site.

18.95

At this point in the real world, we’d probably want to call in the design folks.
But Pragmatic Web Designer is off getting inspiration on a beach somewhere
and won’t be back until later in the year, so let’s put a placeholder in for now.
It’s time for another iteration.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/rails7
http://forums.pragprog.com/forums/rails7

